Deeploy.Targets.PULPOpen.Platform.PULPClusterEngine

class Deeploy.Targets.PULPOpen.Platform.PULPClusterEngine(name: str, Mapping={'Add': AddLayer(maps=[   AddParser [   _AddTemplate(int8_t, int8_t) -> int32_t   _AddTemplate(int8_t, uint8_t) -> int32_t   _AddTemplate(int8_t, int16_t) -> int32_t   _AddTemplate(int8_t, uint16_t) -> int32_t   _AddTemplate(int8_t, int32_t) -> int32_t   _AddTemplate(int8_t, uint32_t) -> int32_t   _AddTemplate(int8_t, int64_t) -> int32_t   _AddTemplate(int8_t, uint64_t) -> int32_t   _AddTemplate(uint8_t, int8_t) -> int32_t   _AddTemplate(uint8_t, uint8_t) -> int32_t   _AddTemplate(uint8_t, int16_t) -> int32_t   _AddTemplate(uint8_t, uint16_t) -> int32_t   _AddTemplate(uint8_t, int32_t) -> int32_t   _AddTemplate(uint8_t, uint32_t) -> int32_t   _AddTemplate(uint8_t, int64_t) -> int32_t   _AddTemplate(uint8_t, uint64_t) -> int32_t   _AddTemplate(int16_t, int8_t) -> int32_t   _AddTemplate(int16_t, uint8_t) -> int32_t   _AddTemplate(int16_t, int16_t) -> int32_t   _AddTemplate(int16_t, uint16_t) -> int32_t   _AddTemplate(int16_t, int32_t) -> int32_t   _AddTemplate(int16_t, uint32_t) -> int32_t   _AddTemplate(int16_t, int64_t) -> int32_t   _AddTemplate(int16_t, uint64_t) -> int32_t   _AddTemplate(uint16_t, int8_t) -> int32_t   _AddTemplate(uint16_t, uint8_t) -> int32_t   _AddTemplate(uint16_t, int16_t) -> int32_t   _AddTemplate(uint16_t, uint16_t) -> int32_t   _AddTemplate(uint16_t, int32_t) -> int32_t   _AddTemplate(uint16_t, uint32_t) -> int32_t   _AddTemplate(uint16_t, int64_t) -> int32_t   _AddTemplate(uint16_t, uint64_t) -> int32_t   _AddTemplate(int32_t, int8_t) -> int32_t   _AddTemplate(int32_t, uint8_t) -> int32_t   _AddTemplate(int32_t, int16_t) -> int32_t   _AddTemplate(int32_t, uint16_t) -> int32_t   _AddTemplate(int32_t, int32_t) -> int32_t   _AddTemplate(int32_t, uint32_t) -> int32_t   _AddTemplate(int32_t, int64_t) -> int32_t   _AddTemplate(int32_t, uint64_t) -> int32_t   _AddTemplate(uint32_t, int8_t) -> int32_t   _AddTemplate(uint32_t, uint8_t) -> int32_t   _AddTemplate(uint32_t, int16_t) -> int32_t   _AddTemplate(uint32_t, uint16_t) -> int32_t   _AddTemplate(uint32_t, int32_t) -> int32_t   _AddTemplate(uint32_t, uint32_t) -> int32_t   _AddTemplate(uint32_t, int64_t) -> int32_t   _AddTemplate(uint32_t, uint64_t) -> int32_t   _AddTemplate(int64_t, int8_t) -> int32_t   _AddTemplate(int64_t, uint8_t) -> int32_t   _AddTemplate(int64_t, int16_t) -> int32_t   _AddTemplate(int64_t, uint16_t) -> int32_t   _AddTemplate(int64_t, int32_t) -> int32_t   _AddTemplate(int64_t, uint32_t) -> int32_t   _AddTemplate(int64_t, int64_t) -> int32_t   _AddTemplate(int64_t, uint64_t) -> int32_t   _AddTemplate(uint64_t, int8_t) -> int32_t   _AddTemplate(uint64_t, uint8_t) -> int32_t   _AddTemplate(uint64_t, int16_t) -> int32_t   _AddTemplate(uint64_t, uint16_t) -> int32_t   _AddTemplate(uint64_t, int32_t) -> int32_t   _AddTemplate(uint64_t, uint32_t) -> int32_t   _AddTemplate(uint64_t, int64_t) -> int32_t   _AddTemplate(uint64_t, uint64_t) -> int32_t   NodeTemplate(float32_t, float32_t) -> float32_t ] ]), 'Concat': ConcatLayer(maps=[   ConcatParser [   _ConcatTemplate(int8_t, int8_t) -> int8_t   _ConcatTemplate(uint8_t, uint8_t) -> uint8_t   _ConcatTemplate(int16_t, int16_t) -> int16_t   _ConcatTemplate(uint16_t, uint16_t) -> uint16_t   _ConcatTemplate(int32_t, int32_t) -> int32_t   _ConcatTemplate(uint32_t, uint32_t) -> uint32_t   _ConcatTemplate(int64_t, int64_t) -> int64_t   _ConcatTemplate(uint64_t, uint64_t) -> uint64_t ] ]), 'Conv': ConvLayer(maps=[   PULPFPConv2DParser [   PULP2DFloatConvIm2ColTemplate(float32_t, float32_t, float32_t) -> float32_t ] ]), 'Dequant': QuantLayer(maps=[   DequantParser [   _DequantTemplate(int8_t) -> float32_t   _DequantTemplate(int32_t) -> float32_t ] ]), 'Flatten': ReshapeLayer(maps=[   FlattenParser [   _ReshapeTemplate(int8_t, int32_t) -> int8_t   _ReshapeTemplate(uint8_t, int32_t) -> uint8_t   _ReshapeTemplate(int16_t, int32_t) -> int16_t   _ReshapeTemplate(uint16_t, int32_t) -> uint16_t   _ReshapeTemplate(int32_t, int32_t) -> int32_t   _ReshapeTemplate(uint32_t, int32_t) -> uint32_t   _ReshapeTemplate(int64_t, int32_t) -> int64_t   _ReshapeTemplate(uint64_t, int32_t) -> uint64_t   _ReshapeTemplate(float32_t, int8_t) -> float32_t   _ReshapeTemplate(float32_t, uint8_t) -> float32_t   _ReshapeTemplate(float32_t, int16_t) -> float32_t   _ReshapeTemplate(float32_t, uint16_t) -> float32_t   _ReshapeTemplate(float32_t, int32_t) -> float32_t   _ReshapeTemplate(float32_t, uint32_t) -> float32_t   _ReshapeTemplate(float32_t, int64_t) -> float32_t   _ReshapeTemplate(float32_t, uint64_t) -> float32_t ] ]), 'Gather': GatherLayer(maps=[   GatherParser [   NodeTemplate(float32_t, int8_t) -> float32_t   NodeTemplate(float32_t, uint8_t) -> float32_t   NodeTemplate(float32_t, int16_t) -> float32_t   NodeTemplate(float32_t, uint16_t) -> float32_t   NodeTemplate(float32_t, int32_t) -> float32_t   NodeTemplate(float32_t, uint32_t) -> float32_t   NodeTemplate(float32_t, int64_t) -> float32_t   NodeTemplate(float32_t, uint64_t) -> float32_t ] ]), 'Gelu': GELULayer(maps=[   GELUParser [   NodeTemplate(float32_t, float32_t) -> float32_t ] ]), 'Gemm': GEMMLayer(maps=[   GEMMParser [   NodeTemplate(float32_t, float32_t, float32_t) -> float32_t ]   PULPGEMMParser [   _GemmTemplate(int8_t, int8_t, int32_t) -> int32_t   NodeTemplate(float32_t, float32_t, float32_t) -> float32_t ] ]), 'IntegerMean': ReduceMeanLayer(maps=[   ReduceMeanParser [   _ReduceMeanTemplate(int8_t) -> int8_t   _ReduceMeanTemplate(uint8_t) -> uint8_t   _ReduceMeanTemplate(int16_t) -> int16_t   _ReduceMeanTemplate(uint16_t) -> uint16_t   _ReduceMeanTemplate(int32_t) -> int32_t   _ReduceMeanTemplate(uint32_t) -> uint32_t   _ReduceMeanTemplate(int64_t) -> int64_t   _ReduceMeanTemplate(uint64_t) -> uint64_t ] ]), 'LayerNormalization': LayerNormLayer(maps=[   LayerNormParser [   NodeTemplate(float32_t, float32_t, float32_t) -> float32_t ] ]), 'MatMul': MatMulLayer(maps=[   MatMulParser [   _MatMulTemplate(int8_t, int8_t) -> int32_t   NodeTemplate(float32_t, float32_t) -> float32_t ] ]), 'MaxPool': MaxPoolLayer(maps=[   MaxPool2DParser [   PULPMaxPoolTemplate(int8_t) -> int8_t   PULPMaxPoolTemplate(uint8_t) -> uint8_t   NodeTemplate(float32_t) -> float32_t ] ]), 'Mul': MulLayer(maps=[   MulParser [   _MulTemplate(int8_t, int8_t) -> int32_t   _MulTemplate(int8_t, int16_t) -> int32_t   _MulTemplate(int8_t, int32_t) -> int32_t   _MulTemplate(int8_t, int64_t) -> int32_t   _MulTemplate(int16_t, int8_t) -> int32_t   _MulTemplate(int16_t, int16_t) -> int32_t   _MulTemplate(int16_t, int32_t) -> int32_t   _MulTemplate(int16_t, int64_t) -> int32_t   _MulTemplate(int32_t, int8_t) -> int32_t   _MulTemplate(int32_t, int16_t) -> int32_t   _MulTemplate(int32_t, int32_t) -> int32_t   _MulTemplate(int32_t, int64_t) -> int32_t   _MulTemplate(int64_t, int8_t) -> int32_t   _MulTemplate(int64_t, int16_t) -> int32_t   _MulTemplate(int64_t, int32_t) -> int32_t   _MulTemplate(int64_t, int64_t) -> int32_t   NodeTemplate(float32_t, float32_t) -> float32_t ] ]), 'Pad': PadLayer(maps=[   Pad1DParser [   _Pad1DTemplate(int8_t) -> int8_t   _Pad1DTemplate(int16_t) -> int16_t   _Pad1DTemplate(int32_t) -> int32_t   _Pad1DTemplate(int64_t) -> int64_t ]   Pad2DParser [   _Pad2DTemplate(int8_t) -> int8_t   _Pad2DTemplate(int16_t) -> int16_t   _Pad2DTemplate(int32_t) -> int32_t   _Pad2DTemplate(int64_t) -> int64_t   NodeTemplate(float32_t, float32_t, float32_t) -> float32_t ] ]), 'Quant': QuantLayer(maps=[   QuantParser [   _QuantTemplate(float32_t) -> int8_t ] ]), 'RQIntegerDiv': RQIntegerDivLayer(maps=[   RQIntegerDivParser [   NodeTemplate(int32_t, int32_t, int32_t, int32_t, int32_t) -> int8_t ] ]), 'ReduceMean': ReduceMeanLayer(maps=[   ReduceMeanParser [   _ReduceMeanTemplate(int8_t) -> int8_t   _ReduceMeanTemplate(uint8_t) -> uint8_t   _ReduceMeanTemplate(int16_t) -> int16_t   _ReduceMeanTemplate(uint16_t) -> uint16_t   _ReduceMeanTemplate(int32_t) -> int32_t   _ReduceMeanTemplate(uint32_t) -> uint32_t   _ReduceMeanTemplate(int64_t) -> int64_t   _ReduceMeanTemplate(uint64_t) -> uint64_t ] ]), 'ReduceSum': ReduceSumLayer(maps=[   ReduceSumParser [   NodeTemplate(float32_t) -> float32_t ] ]), 'Relu': ReluLayer(maps=[   ReluParser [   NodeTemplate(float32_t) -> float32_t ] ]), 'RequantShift': RequantShiftLayer(maps=[   UniformRequantShiftParser [   _UniformRequantShiftTemplate(int8_t, int32_t, int32_t) -> int8_t   _UniformRequantShiftTemplate(uint8_t, int32_t, int32_t) -> int8_t   _UniformRequantShiftTemplate(int16_t, int32_t, int32_t) -> int8_t   _UniformRequantShiftTemplate(uint16_t, int32_t, int32_t) -> int8_t   _UniformRequantShiftTemplate(int32_t, int32_t, int32_t) -> int8_t   _UniformRequantShiftTemplate(uint32_t, int32_t, int32_t) -> int8_t   _UniformRequantShiftTemplate(int64_t, int32_t, int32_t) -> int8_t   _UniformRequantShiftTemplate(uint64_t, int32_t, int32_t) -> int8_t ]   RequantShiftParser [   _RequantShiftTemplate(int8_t, int32_t, int32_t) -> int8_t   _RequantShiftTemplate(uint8_t, int32_t, int32_t) -> int8_t   _RequantShiftTemplate(int16_t, int32_t, int32_t) -> int8_t   _RequantShiftTemplate(uint16_t, int32_t, int32_t) -> int8_t   _RequantShiftTemplate(int32_t, int32_t, int32_t) -> int8_t   _RequantShiftTemplate(uint32_t, int32_t, int32_t) -> int8_t   _RequantShiftTemplate(int64_t, int32_t, int32_t) -> int8_t   _RequantShiftTemplate(uint64_t, int32_t, int32_t) -> int8_t   _RequantShiftTemplate(int8_t, int32_t, int32_t) -> uint8_t   _RequantShiftTemplate(uint8_t, int32_t, int32_t) -> uint8_t   _RequantShiftTemplate(int16_t, int32_t, int32_t) -> uint8_t   _RequantShiftTemplate(uint16_t, int32_t, int32_t) -> uint8_t   _RequantShiftTemplate(int32_t, int32_t, int32_t) -> uint8_t   _RequantShiftTemplate(uint32_t, int32_t, int32_t) -> uint8_t   _RequantShiftTemplate(int64_t, int32_t, int32_t) -> uint8_t   _RequantShiftTemplate(uint64_t, int32_t, int32_t) -> uint8_t ] ]), 'RequantizedAdd': AddLayer(maps=[   RQAddParser [   RQAddTemplate(int8_t, int8_t) -> int8_t   RQAddTemplate(int8_t, int8_t) -> uint8_t   RQAddTemplate(int8_t, uint8_t) -> int8_t   RQAddTemplate(int8_t, uint8_t) -> uint8_t   RQAddTemplate(uint8_t, int8_t) -> int8_t   RQAddTemplate(uint8_t, int8_t) -> uint8_t   RQAddTemplate(uint8_t, uint8_t) -> int8_t   RQAddTemplate(uint8_t, uint8_t) -> uint8_t ] ]), 'RequantizedConv': PULPRQSConvLayer(maps=[   PULPConv2DParser [   PULP2DConvTemplate(int8_t, int8_t, int32_t, int32_t, int32_t) -> int8_t   PULP2DConvTemplate(int8_t, int8_t, int32_t, int32_t, int32_t) -> uint8_t   PULP2DConvTemplate(uint8_t, int8_t, int32_t, int32_t, int32_t) -> int8_t   PULP2DConvTemplate(uint8_t, int8_t, int32_t, int32_t, int32_t) -> uint8_t ]   PULPDWConv2DParser [   PULP2DDWConvTemplate(int8_t, int8_t, int32_t, int32_t, int32_t) -> int8_t   PULP2DDWConvTemplate(int8_t, int8_t, int32_t, int32_t, int32_t) -> uint8_t   PULP2DDWConvTemplate(uint8_t, int8_t, int32_t, int32_t, int32_t) -> int8_t   PULP2DDWConvTemplate(uint8_t, int8_t, int32_t, int32_t, int32_t) -> uint8_t ]   PULPConv1DParser [   PULP1DConvTemplate(int8_t, int8_t, int32_t, int32_t) -> int8_t ]   PULPDWConv1DParser [   PULP1DDWConvTemplate(int8_t, int8_t, int32_t, int32_t) -> int8_t ] ]), 'RequantizedGemm': PULPRQSGEMMLayer(maps=[   PULPMatrixVecParser [   _PULPMatrixVectorTemplate(int8_t, int8_t, int32_t, int32_t) -> int8_t ]   PULPTallGEMMParser [   _PULPTallGEMMTemplate(int8_t, int8_t, int32_t, int32_t) -> int8_t ]   PULPGEMMParser [   PULPGEMMTemplate(int8_t, int8_t, int32_t, int32_t) -> int8_t   PULPGEMMTemplate(uint8_t, int8_t, int32_t, int32_t) -> uint8_t   PULPGEMMTemplate(int8_t, int8_t, int32_t, int32_t) -> uint8_t   PULPGEMMTemplate(uint8_t, int8_t, int32_t, int32_t) -> int8_t ] ]), 'RequantizediGELU': RQSiGELULayer(maps=[   RQSiGELUParser [   _RQSiGELUTemplate(int8_t, int32_t, int32_t, int32_t) -> int8_t ] ]), 'RequantizediHardswish': RQSiHardswishLayer(maps=[   RQSiHardswishParser [   _RQSiHardswishTemplate(int8_t, int32_t, int32_t, int32_t) -> int8_t ] ]), 'Reshape': ReshapeLayer(maps=[   ReshapeParser [   _ReshapeTemplate(int8_t, int32_t) -> int8_t   _ReshapeTemplate(uint8_t, int32_t) -> uint8_t   _ReshapeTemplate(int16_t, int32_t) -> int16_t   _ReshapeTemplate(uint16_t, int32_t) -> uint16_t   _ReshapeTemplate(int32_t, int32_t) -> int32_t   _ReshapeTemplate(uint32_t, int32_t) -> uint32_t   _ReshapeTemplate(int64_t, int32_t) -> int64_t   _ReshapeTemplate(uint64_t, int32_t) -> uint64_t   _ReshapeTemplate(float32_t, int8_t) -> float32_t   _ReshapeTemplate(float32_t, uint8_t) -> float32_t   _ReshapeTemplate(float32_t, int16_t) -> float32_t   _ReshapeTemplate(float32_t, uint16_t) -> float32_t   _ReshapeTemplate(float32_t, int32_t) -> float32_t   _ReshapeTemplate(float32_t, uint32_t) -> float32_t   _ReshapeTemplate(float32_t, int64_t) -> float32_t   _ReshapeTemplate(float32_t, uint64_t) -> float32_t ] ]), 'SGD': SGDLayer(maps=[   SGDParser [   NodeTemplate(float32_t, float32_t) -> float32_t ] ]), 'Slice': SliceLayer(maps=[   SliceParser [   _SliceTemplate(int8_t, uint8_t, uint8_t, uint8_t, uint8_t) -> int8_t   _SliceTemplate(uint8_t, uint8_t, uint8_t, uint8_t, uint8_t) -> int8_t   _SliceTemplate(int16_t, uint8_t, uint8_t, uint8_t, uint8_t) -> int8_t   _SliceTemplate(uint16_t, uint8_t, uint8_t, uint8_t, uint8_t) -> int8_t   _SliceTemplate(int32_t, uint8_t, uint8_t, uint8_t, uint8_t) -> int8_t   _SliceTemplate(uint32_t, uint8_t, uint8_t, uint8_t, uint8_t) -> int8_t   _SliceTemplate(int64_t, uint8_t, uint8_t, uint8_t, uint8_t) -> int8_t   _SliceTemplate(uint64_t, uint8_t, uint8_t, uint8_t, uint8_t) -> int8_t ] ]), 'Softmax': SoftmaxLayer(maps=[   SoftmaxParser [   PULPiSoftmaxTemplate(int8_t) -> uint8_t   PULPiSoftmaxTemplate(uint8_t) -> uint8_t   NodeTemplate(float32_t) -> float32_t ] ]), 'SoftmaxCrossEntropyLoss': SoftmaxCrossEntropyLossLayer(maps=[   SoftmaxCrossEntropyLossParser [   NodeTemplate(float32_t, int8_t) -> float32_t   NodeTemplate(float32_t, uint8_t) -> float32_t   NodeTemplate(float32_t, int16_t) -> float32_t   NodeTemplate(float32_t, uint16_t) -> float32_t   NodeTemplate(float32_t, int32_t) -> float32_t   NodeTemplate(float32_t, uint32_t) -> float32_t   NodeTemplate(float32_t, int64_t) -> float32_t   NodeTemplate(float32_t, uint64_t) -> float32_t ] ]), 'SoftmaxCrossEntropyLossGrad': SoftmaxCrossEntropyLossGradLayer(maps=[   SoftmaxCrossEntropyLossGradParser [   NodeTemplate(float32_t, int8_t) -> float32_t   NodeTemplate(float32_t, uint8_t) -> float32_t   NodeTemplate(float32_t, int16_t) -> float32_t   NodeTemplate(float32_t, uint16_t) -> float32_t   NodeTemplate(float32_t, int32_t) -> float32_t   NodeTemplate(float32_t, uint32_t) -> float32_t   NodeTemplate(float32_t, int64_t) -> float32_t   NodeTemplate(float32_t, uint64_t) -> float32_t ] ]), 'SoftmaxGrad': SoftmaxGradLayer(maps=[   SoftmaxGradParser [   NodeTemplate(float32_t, float32_t) -> float32_t ] ]), 'Squeeze': ReshapeLayer(maps=[   UnsqueezeParser [   _ReshapeTemplate(int8_t, int32_t) -> int8_t   _ReshapeTemplate(uint8_t, int32_t) -> uint8_t   _ReshapeTemplate(int16_t, int32_t) -> int16_t   _ReshapeTemplate(uint16_t, int32_t) -> uint16_t   _ReshapeTemplate(int32_t, int32_t) -> int32_t   _ReshapeTemplate(uint32_t, int32_t) -> uint32_t   _ReshapeTemplate(int64_t, int32_t) -> int64_t   _ReshapeTemplate(uint64_t, int32_t) -> uint64_t   _ReshapeTemplate(float32_t, int8_t) -> float32_t   _ReshapeTemplate(float32_t, uint8_t) -> float32_t   _ReshapeTemplate(float32_t, int16_t) -> float32_t   _ReshapeTemplate(float32_t, uint16_t) -> float32_t   _ReshapeTemplate(float32_t, int32_t) -> float32_t   _ReshapeTemplate(float32_t, uint32_t) -> float32_t   _ReshapeTemplate(float32_t, int64_t) -> float32_t   _ReshapeTemplate(float32_t, uint64_t) -> float32_t ] ]), 'Transpose': TransposeLayer(maps=[   TransposeParser [   PULPTransposeTemplate(int8_t) -> int8_t   PULPTransposeTemplate(uint8_t) -> uint8_t   PULPTransposeTemplate(int16_t) -> int16_t   PULPTransposeTemplate(uint16_t) -> uint16_t   PULPTransposeTemplate(int32_t) -> int32_t   PULPTransposeTemplate(uint32_t) -> uint32_t   PULPTransposeTemplate(int64_t) -> int64_t   PULPTransposeTemplate(uint64_t) -> uint64_t   PULPTransposeTemplate(float32_t) -> float32_t ] ]), 'Unsqueeze': ReshapeLayer(maps=[   UnsqueezeParser [   _ReshapeTemplate(int8_t, int32_t) -> int8_t   _ReshapeTemplate(uint8_t, int32_t) -> uint8_t   _ReshapeTemplate(int16_t, int32_t) -> int16_t   _ReshapeTemplate(uint16_t, int32_t) -> uint16_t   _ReshapeTemplate(int32_t, int32_t) -> int32_t   _ReshapeTemplate(uint32_t, int32_t) -> uint32_t   _ReshapeTemplate(int64_t, int32_t) -> int64_t   _ReshapeTemplate(uint64_t, int32_t) -> uint64_t   _ReshapeTemplate(float32_t, int8_t) -> float32_t   _ReshapeTemplate(float32_t, uint8_t) -> float32_t   _ReshapeTemplate(float32_t, int16_t) -> float32_t   _ReshapeTemplate(float32_t, uint16_t) -> float32_t   _ReshapeTemplate(float32_t, int32_t) -> float32_t   _ReshapeTemplate(float32_t, uint32_t) -> float32_t   _ReshapeTemplate(float32_t, int64_t) -> float32_t   _ReshapeTemplate(float32_t, uint64_t) -> float32_t ] ]), 'iHardswish': iHardswishLayer(maps=[   iHardswishParser [   _iHardswishTemplate(int8_t) -> int32_t ] ]), 'iRMSNorm': iRMSNormLayer(maps=[   iRMSNormParser [   _iRMSNormTemplate(int8_t, int32_t) -> int8_t ] ]), 'iSoftmax': SoftmaxLayer(maps=[   iSoftmaxParser [   PULPiSoftmaxTemplate(int8_t) -> uint8_t   PULPiSoftmaxTemplate(uint8_t) -> uint8_t   NodeTemplate(float32_t) -> float32_t ] ])}, initCode='', includeList=['pmsis.h', 'stdint.h', 'pulp_nn_kernels.h', 'DeeployPULPMath.h', 'mchan_siracusa.h', 'dory_mem.h', 'bsp/ram.h'])

Bases: DeploymentEngine

Methods

__init__(name: str, Mapping={'Add': AddLayer(maps=[   AddParser [   _AddTemplate(int8_t, int8_t) -> int32_t   _AddTemplate(int8_t, uint8_t) -> int32_t   _AddTemplate(int8_t, int16_t) -> int32_t   _AddTemplate(int8_t, uint16_t) -> int32_t   _AddTemplate(int8_t, int32_t) -> int32_t   _AddTemplate(int8_t, uint32_t) -> int32_t   _AddTemplate(int8_t, int64_t) -> int32_t   _AddTemplate(int8_t, uint64_t) -> int32_t   _AddTemplate(uint8_t, int8_t) -> int32_t   _AddTemplate(uint8_t, uint8_t) -> int32_t   _AddTemplate(uint8_t, int16_t) -> int32_t   _AddTemplate(uint8_t, uint16_t) -> int32_t   _AddTemplate(uint8_t, int32_t) -> int32_t   _AddTemplate(uint8_t, uint32_t) -> int32_t   _AddTemplate(uint8_t, int64_t) -> int32_t   _AddTemplate(uint8_t, uint64_t) -> int32_t   _AddTemplate(int16_t, int8_t) -> int32_t   _AddTemplate(int16_t, uint8_t) -> int32_t   _AddTemplate(int16_t, int16_t) -> int32_t   _AddTemplate(int16_t, uint16_t) -> int32_t   _AddTemplate(int16_t, int32_t) -> int32_t   _AddTemplate(int16_t, uint32_t) -> int32_t   _AddTemplate(int16_t, int64_t) -> int32_t   _AddTemplate(int16_t, uint64_t) -> int32_t   _AddTemplate(uint16_t, int8_t) -> int32_t   _AddTemplate(uint16_t, uint8_t) -> int32_t   _AddTemplate(uint16_t, int16_t) -> int32_t   _AddTemplate(uint16_t, uint16_t) -> int32_t   _AddTemplate(uint16_t, int32_t) -> int32_t   _AddTemplate(uint16_t, uint32_t) -> int32_t   _AddTemplate(uint16_t, int64_t) -> int32_t   _AddTemplate(uint16_t, uint64_t) -> int32_t   _AddTemplate(int32_t, int8_t) -> int32_t   _AddTemplate(int32_t, uint8_t) -> int32_t   _AddTemplate(int32_t, int16_t) -> int32_t   _AddTemplate(int32_t, uint16_t) -> int32_t   _AddTemplate(int32_t, int32_t) -> int32_t   _AddTemplate(int32_t, uint32_t) -> int32_t   _AddTemplate(int32_t, int64_t) -> int32_t   _AddTemplate(int32_t, uint64_t) -> int32_t   _AddTemplate(uint32_t, int8_t) -> int32_t   _AddTemplate(uint32_t, uint8_t) -> int32_t   _AddTemplate(uint32_t, int16_t) -> int32_t   _AddTemplate(uint32_t, uint16_t) -> int32_t   _AddTemplate(uint32_t, int32_t) -> int32_t   _AddTemplate(uint32_t, uint32_t) -> int32_t   _AddTemplate(uint32_t, int64_t) -> int32_t   _AddTemplate(uint32_t, uint64_t) -> int32_t   _AddTemplate(int64_t, int8_t) -> int32_t   _AddTemplate(int64_t, uint8_t) -> int32_t   _AddTemplate(int64_t, int16_t) -> int32_t   _AddTemplate(int64_t, uint16_t) -> int32_t   _AddTemplate(int64_t, int32_t) -> int32_t   _AddTemplate(int64_t, uint32_t) -> int32_t   _AddTemplate(int64_t, int64_t) -> int32_t   _AddTemplate(int64_t, uint64_t) -> int32_t   _AddTemplate(uint64_t, int8_t) -> int32_t   _AddTemplate(uint64_t, uint8_t) -> int32_t   _AddTemplate(uint64_t, int16_t) -> int32_t   _AddTemplate(uint64_t, uint16_t) -> int32_t   _AddTemplate(uint64_t, int32_t) -> int32_t   _AddTemplate(uint64_t, uint32_t) -> int32_t   _AddTemplate(uint64_t, int64_t) -> int32_t   _AddTemplate(uint64_t, uint64_t) -> int32_t   NodeTemplate(float32_t, float32_t) -> float32_t ] ]), 'Concat': ConcatLayer(maps=[   ConcatParser [   _ConcatTemplate(int8_t, int8_t) -> int8_t   _ConcatTemplate(uint8_t, uint8_t) -> uint8_t   _ConcatTemplate(int16_t, int16_t) -> int16_t   _ConcatTemplate(uint16_t, uint16_t) -> uint16_t   _ConcatTemplate(int32_t, int32_t) -> int32_t   _ConcatTemplate(uint32_t, uint32_t) -> uint32_t   _ConcatTemplate(int64_t, int64_t) -> int64_t   _ConcatTemplate(uint64_t, uint64_t) -> uint64_t ] ]), 'Conv': ConvLayer(maps=[   PULPFPConv2DParser [   PULP2DFloatConvIm2ColTemplate(float32_t, float32_t, float32_t) -> float32_t ] ]), 'Dequant': QuantLayer(maps=[   DequantParser [   _DequantTemplate(int8_t) -> float32_t   _DequantTemplate(int32_t) -> float32_t ] ]), 'Flatten': ReshapeLayer(maps=[   FlattenParser [   _ReshapeTemplate(int8_t, int32_t) -> int8_t   _ReshapeTemplate(uint8_t, int32_t) -> uint8_t   _ReshapeTemplate(int16_t, int32_t) -> int16_t   _ReshapeTemplate(uint16_t, int32_t) -> uint16_t   _ReshapeTemplate(int32_t, int32_t) -> int32_t   _ReshapeTemplate(uint32_t, int32_t) -> uint32_t   _ReshapeTemplate(int64_t, int32_t) -> int64_t   _ReshapeTemplate(uint64_t, int32_t) -> uint64_t   _ReshapeTemplate(float32_t, int8_t) -> float32_t   _ReshapeTemplate(float32_t, uint8_t) -> float32_t   _ReshapeTemplate(float32_t, int16_t) -> float32_t   _ReshapeTemplate(float32_t, uint16_t) -> float32_t   _ReshapeTemplate(float32_t, int32_t) -> float32_t   _ReshapeTemplate(float32_t, uint32_t) -> float32_t   _ReshapeTemplate(float32_t, int64_t) -> float32_t   _ReshapeTemplate(float32_t, uint64_t) -> float32_t ] ]), 'Gather': GatherLayer(maps=[   GatherParser [   NodeTemplate(float32_t, int8_t) -> float32_t   NodeTemplate(float32_t, uint8_t) -> float32_t   NodeTemplate(float32_t, int16_t) -> float32_t   NodeTemplate(float32_t, uint16_t) -> float32_t   NodeTemplate(float32_t, int32_t) -> float32_t   NodeTemplate(float32_t, uint32_t) -> float32_t   NodeTemplate(float32_t, int64_t) -> float32_t   NodeTemplate(float32_t, uint64_t) -> float32_t ] ]), 'Gelu': GELULayer(maps=[   GELUParser [   NodeTemplate(float32_t, float32_t) -> float32_t ] ]), 'Gemm': GEMMLayer(maps=[   GEMMParser [   NodeTemplate(float32_t, float32_t, float32_t) -> float32_t ]   PULPGEMMParser [   _GemmTemplate(int8_t, int8_t, int32_t) -> int32_t   NodeTemplate(float32_t, float32_t, float32_t) -> float32_t ] ]), 'IntegerMean': ReduceMeanLayer(maps=[   ReduceMeanParser [   _ReduceMeanTemplate(int8_t) -> int8_t   _ReduceMeanTemplate(uint8_t) -> uint8_t   _ReduceMeanTemplate(int16_t) -> int16_t   _ReduceMeanTemplate(uint16_t) -> uint16_t   _ReduceMeanTemplate(int32_t) -> int32_t   _ReduceMeanTemplate(uint32_t) -> uint32_t   _ReduceMeanTemplate(int64_t) -> int64_t   _ReduceMeanTemplate(uint64_t) -> uint64_t ] ]), 'LayerNormalization': LayerNormLayer(maps=[   LayerNormParser [   NodeTemplate(float32_t, float32_t, float32_t) -> float32_t ] ]), 'MatMul': MatMulLayer(maps=[   MatMulParser [   _MatMulTemplate(int8_t, int8_t) -> int32_t   NodeTemplate(float32_t, float32_t) -> float32_t ] ]), 'MaxPool': MaxPoolLayer(maps=[   MaxPool2DParser [   PULPMaxPoolTemplate(int8_t) -> int8_t   PULPMaxPoolTemplate(uint8_t) -> uint8_t   NodeTemplate(float32_t) -> float32_t ] ]), 'Mul': MulLayer(maps=[   MulParser [   _MulTemplate(int8_t, int8_t) -> int32_t   _MulTemplate(int8_t, int16_t) -> int32_t   _MulTemplate(int8_t, int32_t) -> int32_t   _MulTemplate(int8_t, int64_t) -> int32_t   _MulTemplate(int16_t, int8_t) -> int32_t   _MulTemplate(int16_t, int16_t) -> int32_t   _MulTemplate(int16_t, int32_t) -> int32_t   _MulTemplate(int16_t, int64_t) -> int32_t   _MulTemplate(int32_t, int8_t) -> int32_t   _MulTemplate(int32_t, int16_t) -> int32_t   _MulTemplate(int32_t, int32_t) -> int32_t   _MulTemplate(int32_t, int64_t) -> int32_t   _MulTemplate(int64_t, int8_t) -> int32_t   _MulTemplate(int64_t, int16_t) -> int32_t   _MulTemplate(int64_t, int32_t) -> int32_t   _MulTemplate(int64_t, int64_t) -> int32_t   NodeTemplate(float32_t, float32_t) -> float32_t ] ]), 'Pad': PadLayer(maps=[   Pad1DParser [   _Pad1DTemplate(int8_t) -> int8_t   _Pad1DTemplate(int16_t) -> int16_t   _Pad1DTemplate(int32_t) -> int32_t   _Pad1DTemplate(int64_t) -> int64_t ]   Pad2DParser [   _Pad2DTemplate(int8_t) -> int8_t   _Pad2DTemplate(int16_t) -> int16_t   _Pad2DTemplate(int32_t) -> int32_t   _Pad2DTemplate(int64_t) -> int64_t   NodeTemplate(float32_t, float32_t, float32_t) -> float32_t ] ]), 'Quant': QuantLayer(maps=[   QuantParser [   _QuantTemplate(float32_t) -> int8_t ] ]), 'RQIntegerDiv': RQIntegerDivLayer(maps=[   RQIntegerDivParser [   NodeTemplate(int32_t, int32_t, int32_t, int32_t, int32_t) -> int8_t ] ]), 'ReduceMean': ReduceMeanLayer(maps=[   ReduceMeanParser [   _ReduceMeanTemplate(int8_t) -> int8_t   _ReduceMeanTemplate(uint8_t) -> uint8_t   _ReduceMeanTemplate(int16_t) -> int16_t   _ReduceMeanTemplate(uint16_t) -> uint16_t   _ReduceMeanTemplate(int32_t) -> int32_t   _ReduceMeanTemplate(uint32_t) -> uint32_t   _ReduceMeanTemplate(int64_t) -> int64_t   _ReduceMeanTemplate(uint64_t) -> uint64_t ] ]), 'ReduceSum': ReduceSumLayer(maps=[   ReduceSumParser [   NodeTemplate(float32_t) -> float32_t ] ]), 'Relu': ReluLayer(maps=[   ReluParser [   NodeTemplate(float32_t) -> float32_t ] ]), 'RequantShift': RequantShiftLayer(maps=[   UniformRequantShiftParser [   _UniformRequantShiftTemplate(int8_t, int32_t, int32_t) -> int8_t   _UniformRequantShiftTemplate(uint8_t, int32_t, int32_t) -> int8_t   _UniformRequantShiftTemplate(int16_t, int32_t, int32_t) -> int8_t   _UniformRequantShiftTemplate(uint16_t, int32_t, int32_t) -> int8_t   _UniformRequantShiftTemplate(int32_t, int32_t, int32_t) -> int8_t   _UniformRequantShiftTemplate(uint32_t, int32_t, int32_t) -> int8_t   _UniformRequantShiftTemplate(int64_t, int32_t, int32_t) -> int8_t   _UniformRequantShiftTemplate(uint64_t, int32_t, int32_t) -> int8_t ]   RequantShiftParser [   _RequantShiftTemplate(int8_t, int32_t, int32_t) -> int8_t   _RequantShiftTemplate(uint8_t, int32_t, int32_t) -> int8_t   _RequantShiftTemplate(int16_t, int32_t, int32_t) -> int8_t   _RequantShiftTemplate(uint16_t, int32_t, int32_t) -> int8_t   _RequantShiftTemplate(int32_t, int32_t, int32_t) -> int8_t   _RequantShiftTemplate(uint32_t, int32_t, int32_t) -> int8_t   _RequantShiftTemplate(int64_t, int32_t, int32_t) -> int8_t   _RequantShiftTemplate(uint64_t, int32_t, int32_t) -> int8_t   _RequantShiftTemplate(int8_t, int32_t, int32_t) -> uint8_t   _RequantShiftTemplate(uint8_t, int32_t, int32_t) -> uint8_t   _RequantShiftTemplate(int16_t, int32_t, int32_t) -> uint8_t   _RequantShiftTemplate(uint16_t, int32_t, int32_t) -> uint8_t   _RequantShiftTemplate(int32_t, int32_t, int32_t) -> uint8_t   _RequantShiftTemplate(uint32_t, int32_t, int32_t) -> uint8_t   _RequantShiftTemplate(int64_t, int32_t, int32_t) -> uint8_t   _RequantShiftTemplate(uint64_t, int32_t, int32_t) -> uint8_t ] ]), 'RequantizedAdd': AddLayer(maps=[   RQAddParser [   RQAddTemplate(int8_t, int8_t) -> int8_t   RQAddTemplate(int8_t, int8_t) -> uint8_t   RQAddTemplate(int8_t, uint8_t) -> int8_t   RQAddTemplate(int8_t, uint8_t) -> uint8_t   RQAddTemplate(uint8_t, int8_t) -> int8_t   RQAddTemplate(uint8_t, int8_t) -> uint8_t   RQAddTemplate(uint8_t, uint8_t) -> int8_t   RQAddTemplate(uint8_t, uint8_t) -> uint8_t ] ]), 'RequantizedConv': PULPRQSConvLayer(maps=[   PULPConv2DParser [   PULP2DConvTemplate(int8_t, int8_t, int32_t, int32_t, int32_t) -> int8_t   PULP2DConvTemplate(int8_t, int8_t, int32_t, int32_t, int32_t) -> uint8_t   PULP2DConvTemplate(uint8_t, int8_t, int32_t, int32_t, int32_t) -> int8_t   PULP2DConvTemplate(uint8_t, int8_t, int32_t, int32_t, int32_t) -> uint8_t ]   PULPDWConv2DParser [   PULP2DDWConvTemplate(int8_t, int8_t, int32_t, int32_t, int32_t) -> int8_t   PULP2DDWConvTemplate(int8_t, int8_t, int32_t, int32_t, int32_t) -> uint8_t   PULP2DDWConvTemplate(uint8_t, int8_t, int32_t, int32_t, int32_t) -> int8_t   PULP2DDWConvTemplate(uint8_t, int8_t, int32_t, int32_t, int32_t) -> uint8_t ]   PULPConv1DParser [   PULP1DConvTemplate(int8_t, int8_t, int32_t, int32_t) -> int8_t ]   PULPDWConv1DParser [   PULP1DDWConvTemplate(int8_t, int8_t, int32_t, int32_t) -> int8_t ] ]), 'RequantizedGemm': PULPRQSGEMMLayer(maps=[   PULPMatrixVecParser [   _PULPMatrixVectorTemplate(int8_t, int8_t, int32_t, int32_t) -> int8_t ]   PULPTallGEMMParser [   _PULPTallGEMMTemplate(int8_t, int8_t, int32_t, int32_t) -> int8_t ]   PULPGEMMParser [   PULPGEMMTemplate(int8_t, int8_t, int32_t, int32_t) -> int8_t   PULPGEMMTemplate(uint8_t, int8_t, int32_t, int32_t) -> uint8_t   PULPGEMMTemplate(int8_t, int8_t, int32_t, int32_t) -> uint8_t   PULPGEMMTemplate(uint8_t, int8_t, int32_t, int32_t) -> int8_t ] ]), 'RequantizediGELU': RQSiGELULayer(maps=[   RQSiGELUParser [   _RQSiGELUTemplate(int8_t, int32_t, int32_t, int32_t) -> int8_t ] ]), 'RequantizediHardswish': RQSiHardswishLayer(maps=[   RQSiHardswishParser [   _RQSiHardswishTemplate(int8_t, int32_t, int32_t, int32_t) -> int8_t ] ]), 'Reshape': ReshapeLayer(maps=[   ReshapeParser [   _ReshapeTemplate(int8_t, int32_t) -> int8_t   _ReshapeTemplate(uint8_t, int32_t) -> uint8_t   _ReshapeTemplate(int16_t, int32_t) -> int16_t   _ReshapeTemplate(uint16_t, int32_t) -> uint16_t   _ReshapeTemplate(int32_t, int32_t) -> int32_t   _ReshapeTemplate(uint32_t, int32_t) -> uint32_t   _ReshapeTemplate(int64_t, int32_t) -> int64_t   _ReshapeTemplate(uint64_t, int32_t) -> uint64_t   _ReshapeTemplate(float32_t, int8_t) -> float32_t   _ReshapeTemplate(float32_t, uint8_t) -> float32_t   _ReshapeTemplate(float32_t, int16_t) -> float32_t   _ReshapeTemplate(float32_t, uint16_t) -> float32_t   _ReshapeTemplate(float32_t, int32_t) -> float32_t   _ReshapeTemplate(float32_t, uint32_t) -> float32_t   _ReshapeTemplate(float32_t, int64_t) -> float32_t   _ReshapeTemplate(float32_t, uint64_t) -> float32_t ] ]), 'SGD': SGDLayer(maps=[   SGDParser [   NodeTemplate(float32_t, float32_t) -> float32_t ] ]), 'Slice': SliceLayer(maps=[   SliceParser [   _SliceTemplate(int8_t, uint8_t, uint8_t, uint8_t, uint8_t) -> int8_t   _SliceTemplate(uint8_t, uint8_t, uint8_t, uint8_t, uint8_t) -> int8_t   _SliceTemplate(int16_t, uint8_t, uint8_t, uint8_t, uint8_t) -> int8_t   _SliceTemplate(uint16_t, uint8_t, uint8_t, uint8_t, uint8_t) -> int8_t   _SliceTemplate(int32_t, uint8_t, uint8_t, uint8_t, uint8_t) -> int8_t   _SliceTemplate(uint32_t, uint8_t, uint8_t, uint8_t, uint8_t) -> int8_t   _SliceTemplate(int64_t, uint8_t, uint8_t, uint8_t, uint8_t) -> int8_t   _SliceTemplate(uint64_t, uint8_t, uint8_t, uint8_t, uint8_t) -> int8_t ] ]), 'Softmax': SoftmaxLayer(maps=[   SoftmaxParser [   PULPiSoftmaxTemplate(int8_t) -> uint8_t   PULPiSoftmaxTemplate(uint8_t) -> uint8_t   NodeTemplate(float32_t) -> float32_t ] ]), 'SoftmaxCrossEntropyLoss': SoftmaxCrossEntropyLossLayer(maps=[   SoftmaxCrossEntropyLossParser [   NodeTemplate(float32_t, int8_t) -> float32_t   NodeTemplate(float32_t, uint8_t) -> float32_t   NodeTemplate(float32_t, int16_t) -> float32_t   NodeTemplate(float32_t, uint16_t) -> float32_t   NodeTemplate(float32_t, int32_t) -> float32_t   NodeTemplate(float32_t, uint32_t) -> float32_t   NodeTemplate(float32_t, int64_t) -> float32_t   NodeTemplate(float32_t, uint64_t) -> float32_t ] ]), 'SoftmaxCrossEntropyLossGrad': SoftmaxCrossEntropyLossGradLayer(maps=[   SoftmaxCrossEntropyLossGradParser [   NodeTemplate(float32_t, int8_t) -> float32_t   NodeTemplate(float32_t, uint8_t) -> float32_t   NodeTemplate(float32_t, int16_t) -> float32_t   NodeTemplate(float32_t, uint16_t) -> float32_t   NodeTemplate(float32_t, int32_t) -> float32_t   NodeTemplate(float32_t, uint32_t) -> float32_t   NodeTemplate(float32_t, int64_t) -> float32_t   NodeTemplate(float32_t, uint64_t) -> float32_t ] ]), 'SoftmaxGrad': SoftmaxGradLayer(maps=[   SoftmaxGradParser [   NodeTemplate(float32_t, float32_t) -> float32_t ] ]), 'Squeeze': ReshapeLayer(maps=[   UnsqueezeParser [   _ReshapeTemplate(int8_t, int32_t) -> int8_t   _ReshapeTemplate(uint8_t, int32_t) -> uint8_t   _ReshapeTemplate(int16_t, int32_t) -> int16_t   _ReshapeTemplate(uint16_t, int32_t) -> uint16_t   _ReshapeTemplate(int32_t, int32_t) -> int32_t   _ReshapeTemplate(uint32_t, int32_t) -> uint32_t   _ReshapeTemplate(int64_t, int32_t) -> int64_t   _ReshapeTemplate(uint64_t, int32_t) -> uint64_t   _ReshapeTemplate(float32_t, int8_t) -> float32_t   _ReshapeTemplate(float32_t, uint8_t) -> float32_t   _ReshapeTemplate(float32_t, int16_t) -> float32_t   _ReshapeTemplate(float32_t, uint16_t) -> float32_t   _ReshapeTemplate(float32_t, int32_t) -> float32_t   _ReshapeTemplate(float32_t, uint32_t) -> float32_t   _ReshapeTemplate(float32_t, int64_t) -> float32_t   _ReshapeTemplate(float32_t, uint64_t) -> float32_t ] ]), 'Transpose': TransposeLayer(maps=[   TransposeParser [   PULPTransposeTemplate(int8_t) -> int8_t   PULPTransposeTemplate(uint8_t) -> uint8_t   PULPTransposeTemplate(int16_t) -> int16_t   PULPTransposeTemplate(uint16_t) -> uint16_t   PULPTransposeTemplate(int32_t) -> int32_t   PULPTransposeTemplate(uint32_t) -> uint32_t   PULPTransposeTemplate(int64_t) -> int64_t   PULPTransposeTemplate(uint64_t) -> uint64_t   PULPTransposeTemplate(float32_t) -> float32_t ] ]), 'Unsqueeze': ReshapeLayer(maps=[   UnsqueezeParser [   _ReshapeTemplate(int8_t, int32_t) -> int8_t   _ReshapeTemplate(uint8_t, int32_t) -> uint8_t   _ReshapeTemplate(int16_t, int32_t) -> int16_t   _ReshapeTemplate(uint16_t, int32_t) -> uint16_t   _ReshapeTemplate(int32_t, int32_t) -> int32_t   _ReshapeTemplate(uint32_t, int32_t) -> uint32_t   _ReshapeTemplate(int64_t, int32_t) -> int64_t   _ReshapeTemplate(uint64_t, int32_t) -> uint64_t   _ReshapeTemplate(float32_t, int8_t) -> float32_t   _ReshapeTemplate(float32_t, uint8_t) -> float32_t   _ReshapeTemplate(float32_t, int16_t) -> float32_t   _ReshapeTemplate(float32_t, uint16_t) -> float32_t   _ReshapeTemplate(float32_t, int32_t) -> float32_t   _ReshapeTemplate(float32_t, uint32_t) -> float32_t   _ReshapeTemplate(float32_t, int64_t) -> float32_t   _ReshapeTemplate(float32_t, uint64_t) -> float32_t ] ]), 'iHardswish': iHardswishLayer(maps=[   iHardswishParser [   _iHardswishTemplate(int8_t) -> int32_t ] ]), 'iRMSNorm': iRMSNormLayer(maps=[   iRMSNormParser [   _iRMSNormTemplate(int8_t, int32_t) -> int8_t ] ]), 'iSoftmax': SoftmaxLayer(maps=[   iSoftmaxParser [   PULPiSoftmaxTemplate(int8_t) -> uint8_t   PULPiSoftmaxTemplate(uint8_t) -> uint8_t   NodeTemplate(float32_t) -> float32_t ] ])}, initCode='', includeList=['pmsis.h', 'stdint.h', 'pulp_nn_kernels.h', 'DeeployPULPMath.h', 'mchan_siracusa.h', 'dory_mem.h', 'bsp/ram.h']) None

Instantiate a new engine

Parameters:
  • name (str) – Name of this compute engine; must be unique per deployemnt

  • Mapping (Dict[str, Union[ONNXLayer, Callable[[gs.Node], Any]]]) – Mapping between operator names and ONNXLayer implementations

  • initCode (str) – Static initialization code for this engine

  • includeList (List[str]) – List of header files to be included with #include directives

__init__(name[, Mapping])

Instantiate a new engine

canExecute(node)

Return whether this accelerator can execute an operator

Attributes

name

Name of this compute engine; must be unique per deployemnt

Mapping

Mapping between operator names and ONNXLayer implementations

includeList

List of header files to be included with #include directives

canExecute(node: Node) bool

Return whether this accelerator can execute an operator

Parameters:

node (gs.Node) – Operator to be checked

Returns:

True if operator can be run on this Engine, False otherwise

Return type:

bool

name

Name of this compute engine; must be unique per deployemnt

Type:

str

Mapping

Mapping between operator names and ONNXLayer implementations

includeList

List of header files to be included with #include directives

Type:

List[str]