/github/workspace/src/TransformFunctions/kernels/plp_dwt_f32p_xpulpv2.c
Functions
Name | |
---|---|
void | plp_dwt_f32p_xpulpv2(void * args) Floating-point DWT on real input data for XPULPV2 extension. |
void | plp_dwt_haar_f32p_xpulpv2(void * args) Floating-point DWT kernel optimized for Haar Wavelet on real input data for XPULPV2 extension. |
Defines
Name | |
---|---|
HAAR_COEF | |
MAC(Acc, A, B) | |
MSU(Acc, A, B) | |
FILT_STEP |
Functions Documentation
function plp_dwt_f32p_xpulpv2
void plp_dwt_f32p_xpulpv2(
void * args
)
Floating-point DWT on real input data for XPULPV2 extension.
Parameters:
- args points to the plp_dwt_instance_f32
Return: none
function plp_dwt_haar_f32p_xpulpv2
void plp_dwt_haar_f32p_xpulpv2(
void * args
)
Floating-point DWT kernel optimized for Haar Wavelet on real input data for XPULPV2 extension.
Parameters:
- args points to the plp_dwt_instance_f32
Return: none
Macros Documentation
define HAAR_COEF
#define HAAR_COEF 0.707106781186547570f
define MAC
#define MAC(
Acc,
A,
B
)
Acc += (A * B);
define MSU
#define MSU(
Acc,
A,
B
)
Acc -= (A * B);
define FILT_STEP
#define FILT_STEP 2U
Source code
/* ----------------------------------------------------------------------
* Project: PULP DSP Library
* Title: plp_dwt_f32p_xpulpv2.c
* Description: Floating-point Discret Wavelet Transform on real input data for XPULPV2
*
* $Date: 10. Juli 2021
* $Revision: V1
*
* Target Processor: PULP cores with "F" support (wolfe)
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2021 ETH Zurich and University of Bologna. All rights reserved.
*
* Author: Jakub Mandula, ETH Zurich
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "plp_math.h"
#include "plp_const_structs.h"
/* HELPER FUNCTIONS */
#define HAAR_COEF 0.707106781186547570f
#define MAC(Acc, A, B) Acc += (A * B);
#define MSU(Acc, A, B) Acc -= (A * B);
#define FILT_STEP 2U
#include "plp_dwt_signal_ext.h"
void plp_dwt_f32p_xpulpv2(void *args) {
plp_dwt_instance_f32 *S = (plp_dwt_instance_f32*) args;
const float32_t *pSrc = S->pSrc;
const uint32_t length = S->length;
const plp_dwt_wavelet_f32 wavelet = S->wavelet;
plp_dwt_extension_mode mode = S->mode;
const uint32_t nPE = S->nPE;
const uint32_t core_id = hal_core_id();
float32_t *pCurrentA = S->pDstA + core_id;
float32_t *pCurrentD = S->pDstD + core_id;
int32_t offset = 1 + FILT_STEP * core_id;
const uint32_t step = FILT_STEP * nPE; // We can skip the next nPE steps as they are done by other cores
/***
* The filter convolution is done in 4 steps handling cases where
* 1. Filter is hanging over the left side of the signal
* 2. Filter is same size, or totally enclosed in signal
* 3. Filter is larger than the enclosed signal and hangs over both edges
* 4. Filter hangs over the right side of the signal
*
* Each of the cases, where signal hangs over the boundary of the signal, values are computed
* on demand based on the edge extension mode.
*/
/*
* Handle Left overhanging
*
* X() = x x[A B C D E F]
* H() = [d c b a]
* ^ ^
* | First compute the filter part overlapping with the signal
* Then extend the signal (x x) by computing the values based on the extension mode
*/
for(; offset < wavelet.length - 1 && offset < length; offset += step){
float32_t sum_lo = 0;
float32_t sum_hi = 0;
uint32_t filt_j = 0;
// Compute Filter overlapping with signal
for(; filt_j <= offset; filt_j++){
MAC(sum_lo, wavelet.dec_lo[filt_j], pSrc[offset - filt_j]);
MAC(sum_hi, wavelet.dec_hi[filt_j], pSrc[offset - filt_j]);
}
// Compute Left edge extension
switch(mode){
case PLP_DWT_MODE_CONSTANT:
CONSTANT_EDGE_LEFT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset);
break;
case PLP_DWT_MODE_SYMMETRIC:
SYMMETRIC_EDGE_LEFT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset);
break;
case PLP_DWT_MODE_REFLECT:
REFLECT_EDGE_LEFT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset);
break;
case PLP_DWT_MODE_ANTISYMMETRIC:
ANTISYMMETRIC_EDGE_LEFT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset);
break;
case PLP_DWT_MODE_ANTIREFLECT:
ANTIREFLECT_EDGE_LEFT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset, float32_t);
break;
case PLP_DWT_MODE_PERIODIC:
case PLP_DWT_MODE_ZERO:
default:
break;
}
*pCurrentA = sum_lo;
*pCurrentD = sum_hi;
pCurrentA += nPE;
pCurrentD += nPE;
}
/*
* Compute center (length >= wavelet.length)
*
* X() = [A B C D E F]
* h() = [d c b a]
* ^
* Compute a full convolution of the filter with the signal
*/
for(;offset < length; offset += step){
float32_t sum_lo = 0;
float32_t sum_hi = 0;
uint32_t filt_j = 0;
for(; filt_j < wavelet.length; filt_j++){
MAC(sum_lo, wavelet.dec_lo[filt_j], pSrc[offset - filt_j]);
MAC(sum_hi, wavelet.dec_hi[filt_j], pSrc[offset - filt_j]);
}
*pCurrentA = sum_lo;
*pCurrentD = sum_hi;
pCurrentA += nPE;
pCurrentD += nPE;
}
/*
* Compute center (length < wavelet.length)
*
* X() = y y[A B C]x x x
* h() = [h g f e d c b a]
* ^ ^ ^
* | | Compute Right extension (x x x) based on extension mode
* | Compute a full convolution of the filter overlapping with the signal
* Compute Left extension (y y) based on extension mode
*/
for(;offset < wavelet.length - 1; offset += step){
float32_t sum_lo = 0;
float32_t sum_hi = 0;
uint32_t filt_j = 0;
// Filter Right extension
switch(mode){
case PLP_DWT_MODE_CONSTANT:
CONSTANT_EDGE_RIGHT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset);
break;
case PLP_DWT_MODE_SYMMETRIC:
SYMMETRIC_EDGE_RIGHT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset);
break;
case PLP_DWT_MODE_REFLECT:
REFLECT_EDGE_RIGHT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset);
break;
case PLP_DWT_MODE_ANTISYMMETRIC:
ANTISYMMETRIC_EDGE_RIGHT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset);
break;
case PLP_DWT_MODE_ANTIREFLECT:
ANTIREFLECT_EDGE_RIGHT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset, float32_t);
break;
case PLP_DWT_MODE_PERIODIC:
case PLP_DWT_MODE_ZERO:
default:
filt_j = offset - length + 1;
break;
}
// Filter Center overlapp
for(; filt_j <= offset; filt_j++){
MAC(sum_lo, wavelet.dec_lo[filt_j], pSrc[offset - filt_j]);
MAC(sum_hi, wavelet.dec_hi[filt_j], pSrc[offset - filt_j]);
}
// Filter Left extension
switch(mode){
case PLP_DWT_MODE_CONSTANT:
CONSTANT_EDGE_LEFT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset);
break;
case PLP_DWT_MODE_SYMMETRIC:
SYMMETRIC_EDGE_LEFT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset);
break;
case PLP_DWT_MODE_REFLECT:
REFLECT_EDGE_LEFT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset);
break;
case PLP_DWT_MODE_ANTISYMMETRIC:
ANTISYMMETRIC_EDGE_LEFT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset);
break;
case PLP_DWT_MODE_ANTIREFLECT:
ANTIREFLECT_EDGE_LEFT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset, float32_t);
break;
case PLP_DWT_MODE_PERIODIC:
case PLP_DWT_MODE_ZERO:
default:
break;
}
*pCurrentA = sum_lo;
*pCurrentD = sum_hi;
pCurrentA += nPE;
pCurrentD += nPE;
}
/*
* Handle Right overhanging
*
* X() = [A B C D E F]x x
* H() = [d c b a]
* ^ ^
* | First extend the signal (x x) by computing the values based on the extension mode
* Then compute the filter part overlapping with the signal
*/
for(; offset < length + wavelet.length - 1; offset += step){
float32_t sum_lo = 0;
float32_t sum_hi = 0;
uint32_t filt_j = 0;
// Compute Left edge extension
switch(mode){
case PLP_DWT_MODE_CONSTANT:
CONSTANT_EDGE_RIGHT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset);
break;
case PLP_DWT_MODE_SYMMETRIC:
SYMMETRIC_EDGE_RIGHT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset);
break;
case PLP_DWT_MODE_REFLECT:
REFLECT_EDGE_RIGHT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset);
break;
case PLP_DWT_MODE_ANTISYMMETRIC:
ANTISYMMETRIC_EDGE_RIGHT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset);
break;
case PLP_DWT_MODE_ANTIREFLECT:
ANTIREFLECT_EDGE_RIGHT(sum_lo, sum_hi, pSrc, length, wavelet, filt_j, offset, float32_t);
break;
case PLP_DWT_MODE_PERIODIC:
case PLP_DWT_MODE_ZERO:
default:
filt_j = offset - length + 1;
break;
}
// Filter overlapping with signal
for(; filt_j < wavelet.length; filt_j++){
MAC(sum_lo, wavelet.dec_lo[filt_j], pSrc[offset - filt_j]);
MAC(sum_hi, wavelet.dec_hi[filt_j], pSrc[offset - filt_j]);
}
*pCurrentA = sum_lo;
*pCurrentD = sum_hi;
pCurrentA += nPE;
pCurrentD += nPE;
}
}
void plp_dwt_haar_f32p_xpulpv2(void *args) {
plp_dwt_instance_f32 *S = (plp_dwt_instance_f32*) args;
const float32_t *pSrc = S->pSrc;
const uint32_t length = S->length;
plp_dwt_extension_mode mode = S->mode;
const uint32_t nPE = S->nPE;
const uint32_t core_id = hal_core_id();
float32_t *pCurrentA = S->pDstA + core_id;
float32_t *pCurrentD = S->pDstD + core_id;
int32_t offset = 1 + FILT_STEP * core_id;
const uint32_t step = FILT_STEP * nPE; // We can skip the next nPE steps as they are done by other cores
/***
* The filter convolution is done in 4 steps handling cases where
* 1. Filter is hanging over the left side of the signal
* 2. Filter is same size, or totally enclosed in signal
* 3. Filter is larger than the enclosed signal and hangs over both edges
* 4. Filter hangs over the right side of the signal
*
* Each of the cases, where signal hangs over the boundary of the signal, values are computed
* on demand based on the edge extension mode.
*/
/*
* Compute center (length >= wavelet.length)
*
* X() = [A B C D E F]
* h() = [b a]
* ^
* Compute a full convolution of the filter with the signal
*/
for(; offset < length; offset += step){
float32_t sum_lo = HAAR_COEF * (pSrc[offset - 1] + pSrc[offset]);
float32_t sum_hi = HAAR_COEF * (pSrc[offset - 1] - pSrc[offset]);
*pCurrentA = sum_lo;
*pCurrentD = sum_hi;
pCurrentA += nPE;
pCurrentD += nPE;
}
/*
* Handle Right overhanging
*
* X() = [A B C D E F]x x
* H() = [d c b a]
* ^ ^
* | First extend the signal (x x) by computing the values based on the extension mode
* Then compute the filter part overlapping with the signal
*/
if(offset == length){
float32_t sum_lo = 0;
float32_t sum_hi = 0;
uint32_t filt_j = 0;
// Compute Left edge extension
switch(mode){
case PLP_DWT_MODE_CONSTANT:
case PLP_DWT_MODE_SYMMETRIC:
sum_lo = 2.0f * HAAR_COEF * pSrc[length - 1]; // dec_lo[0] * src[N-1] + dec_lo[1] * src[N-1]
sum_hi = 0; // dec_hi[0] * src[N-1] + dec_hi[1] * src[N-1] == -dec_hi[1] * src[N-1] + dec_hi[1] * src[N-1]
break;
case PLP_DWT_MODE_REFLECT:
sum_lo = HAAR_COEF * (pSrc[length - 1] + pSrc[length - 2]);
sum_hi = HAAR_COEF * (pSrc[length - 1] - pSrc[length - 2]);
break;
case PLP_DWT_MODE_ANTISYMMETRIC:
sum_lo = HAAR_COEF * (pSrc[length - 1] - pSrc[length - 1]);
sum_hi = HAAR_COEF * (pSrc[length - 1] + pSrc[length - 1]);
break;
case PLP_DWT_MODE_ANTIREFLECT:
sum_lo = HAAR_COEF * (3*pSrc[length - 1] - pSrc[length - 2]);
sum_hi = HAAR_COEF * ( -pSrc[length - 1] + pSrc[length - 2]);
break;
case PLP_DWT_MODE_PERIODIC:
case PLP_DWT_MODE_ZERO:
default:
sum_lo = HAAR_COEF * pSrc[length - 1];
sum_hi = HAAR_COEF * pSrc[length - 1];
break;
}
*pCurrentA = sum_lo;
*pCurrentD = sum_hi;
}
}
Updated on 2023-03-01 at 16:16:33 +0000