/github/workspace/src/MatrixFunctions/mat_inv/kernels/plp_mat_inv_f32s_xpulpv2.c
Functions
Name | |
---|---|
int | plp_mat_inv_f32s_xpulpv2(float restrict pSrc, float restrict pDst, uint32_t N) matrix inversion of 32-bit floating-point matrices kernel for XPULPV2 extension. |
Functions Documentation
function plp_mat_inv_f32s_xpulpv2
int plp_mat_inv_f32s_xpulpv2(
float *__restrict__ pSrc,
float *__restrict__ pDst,
uint32_t N
)
matrix inversion of 32-bit floating-point matrices kernel for XPULPV2 extension.
Parameters:
- pSrc Points to the first input matrix. pSrc is modified by this funciton
- N Width and height of both matrices
- pDst Points to the output matrix
Return: 0: Success, 1: Matrix is singular
matrix inverse of a 32-bit floating-point matrices for XPULPV2 extension.
Source code
/* =====================================================================
* Project: PULP DSP Library
* Title: plp_mat_inv_f32s_xpulpv2.c
* Description: 32-bit floating-point matrix inversion for XPULPV2
*
* $Date: 14. July 2020
* $Revision: V0
*
* Target Processor: PULP cores
* ===================================================================== */
/*
* Copyright (C) 2020 ETH Zurich and University of Bologna.
*
* Author: Tibor Schneider, ETH Zurich
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Notice: project inspired by ARM CMSIS DSP and parts of source codes
* ported and adopted for RISC-V PULP platform from ARM CMSIS DSP
* released under Copyright (C) 2010-2019 ARM Limited or its affiliates
* Apache-2.0.
*/
#include "plp_math.h"
int plp_mat_inv_f32s_xpulpv2(float *__restrict__ pSrc, float *__restrict__ pDst, uint32_t N) {
/*--------------------------------------------------------------------------------------------------------------
* Matrix Inverse can be solved using elementary row operations.
*
* Gauss-Jordan Method:
*
* 1. First combine the identity matrix and the input matrix separated by a bar to form an
* augmented matrix as follows:
* _ _ _ _
* | a11 a12 | 1 0 | | X11 X12 |
* | | | = | |
* |_ a21 a22 | 0 1 _| |_ X21 X21 _|
*
* 2. In our implementation, pDst Matrix is used as identity matrix.
*
* 3. Begin with the first row. Let i = 1.
*
* 4. Check to see if the pivot for row i is zero.
* The pivot is the element of the main diagonal that is on the current row.
* For instance, if working with row i, then the pivot element is aii.
* If the pivot is zero, exchange that row with a row below it that does not
* contain a zero in column i. If this is not possible, then an inverse
* to that matrix does not exist.
*
* 5. Divide every element of row i by the pivot.
*
* 6. For every row below and row i, replace that row with the sum of that row and
* a multiple of row i so that each new element in column i below row i is zero.
*
* 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
* for every element below and above the main diagonal.
*
* 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
* Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
*----------------------------------------------------------------------------------------------------------------*/
float *pSrcT1, *pSrcT2; /* Temporary input data matrix pointer */
float *pDstT1, *pDstT2; /* Temporary output data matrix pointer */
float *pPivotRowIn; /* Temporary input and output data matrix pointer */
float *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */
float Xchg, in = 0.0f, in1; /* Temporary input values */
uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */
uint32_t M = N; /* M is the number of rows. However, the matirces must be square. */
/* Working pointer for destination matrix */
pDstT1 = pDst;
/* Loop over the number of rows */
rowCnt = M;
/* Making the destination matrix as identity matrix */
while (rowCnt > 0U) {
/* Writing all zeroes in lower triangle of the destination matrix */
j = M - rowCnt;
while (j > 0U) {
*pDstT1++ = 0.0f;
j--;
}
/* Writing all ones in the diagonal of the destination matrix */
*pDstT1++ = 1.0f;
/* Writing all zeroes in upper triangle of the destination matrix */
j = rowCnt - 1U;
while (j > 0U) {
*pDstT1++ = 0.0f;
j--;
}
/* Decrement loop counter */
rowCnt--;
}
/* Loop over the number of columns of the input matrix.
All the elements in each column are processed by the row operations */
loopCnt = N;
/* Index modifier to navigate through the columns */
l = 0U;
while (loopCnt > 0U) {
/* Check if the pivot element is zero..
* If it is zero then interchange the row with non zero row below.
* If there is no non zero element to replace in the rows below,
* then the matrix is Singular. */
/* Working pointer for the input matrix that points
* to the pivot element of the particular row */
pSrcT1 = pSrc + (l * N);
/* Working pointer for the destination matrix that points
* to the pivot element of the particular row */
pDstT1 = pDst + (l * N);
/* Temporary variable to hold the pivot value */
in = *pSrcT1;
/* Destination pointer modifier */
k = 1U;
/* Check if the pivot element is zero */
if (*pSrcT1 == 0.0f) {
/* Loop over the number rows present below */
for (i = (l + 1U); i < M; i++) {
/* Update the input and destination pointers */
pSrcT2 = pSrcT1 + (N * i);
pDstT2 = pDstT1 + (N * k);
/* Check if there is a non zero pivot element to
* replace in the rows below */
if (*pSrcT2 != 0.0f) {
/* Loop over number of columns
* to the right of the pilot element */
j = N - l;
while (j > 0U) {
/* Exchange the row elements of the input matrix */
Xchg = *pSrcT2;
*pSrcT2++ = *pSrcT1;
*pSrcT1++ = Xchg;
/* Decrement the loop counter */
j--;
}
/* Loop over number of columns of the destination matrix */
j = N;
while (j > 0U) {
/* Exchange the row elements of the destination matrix */
Xchg = *pDstT2;
*pDstT2++ = *pDstT1;
*pDstT1++ = Xchg;
/* Decrement loop counter */
j--;
}
/* Flag to indicate whether exchange is done or not */
flag = 1U;
/* Break after exchange is done */
break;
}
/* Update the destination pointer modifier */
k++;
/* Decrement loop counter */
}
}
/* Update the status if the matrix is singular */
if ((flag != 1U) && (in == 0.0f)) {
return 1;
}
/* Points to the pivot row of input and destination matrices */
pPivotRowIn = pSrc + (l * N);
pPivotRowDst = pDst + (l * N);
/* Temporary pointers to the pivot row pointers */
pSrcT1 = pPivotRowIn;
pSrcT2 = pPivotRowDst;
/* Pivot element of the row */
in = *pPivotRowIn;
/* Loop over number of columns
* to the right of the pilot element */
j = (N - l);
while (j > 0U) {
/* Divide each element of the row of the input matrix
* by the pivot element */
in1 = *pSrcT1;
*pSrcT1++ = in1 / in;
/* Decrement the loop counter */
j--;
}
/* Loop over number of columns of the destination matrix */
j = N;
while (j > 0U) {
/* Divide each element of the row of the destination matrix
* by the pivot element */
in1 = *pSrcT2;
*pSrcT2++ = in1 / in;
/* Decrement the loop counter */
j--;
}
/* Replace the rows with the sum of that row and a multiple of row i
* so that each new element in column i above row i is zero.*/
/* Temporary pointers for input and destination matrices */
pSrcT1 = pSrc;
pSrcT2 = pDst;
/* index used to check for pivot element */
i = 0U;
/* Loop over number of rows */
/* to be replaced by the sum of that row and a multiple of row i */
k = M;
while (k > 0U) {
/* Check for the pivot element */
if (i == l) {
/* If the processing element is the pivot element,
only the columns to the right are to be processed */
pSrcT1 += N - l;
pSrcT2 += N;
} else {
/* Element of the reference row */
in = *pSrcT1;
/* Working pointers for input and destination pivot rows */
pPRT_in = pPivotRowIn;
pPRT_pDst = pPivotRowDst;
/* Loop over the number of columns to the right of the pivot element,
to replace the elements in the input matrix */
j = (N - l);
while (j > 0U) {
/* Replace the element by the sum of that row
and a multiple of the reference row */
in1 = *pSrcT1;
*pSrcT1++ = in1 - (in * *pPRT_in++);
/* Decrement the loop counter */
j--;
}
/* Loop over the number of columns to
replace the elements in the destination matrix */
j = N;
while (j > 0U) {
/* Replace the element by the sum of that row
and a multiple of the reference row */
in1 = *pSrcT2;
*pSrcT2++ = in1 - (in * *pPRT_pDst++);
/* Decrement loop counter */
j--;
}
}
/* Increment temporary input pointer */
pSrcT1 = pSrcT1 + l;
/* Decrement loop counter */
k--;
/* Increment pivot index */
i++;
}
/* Increment the input pointer */
pSrc++;
/* Decrement the loop counter */
loopCnt--;
/* Increment the index modifier */
l++;
}
if ((flag != 1U) && (in == 0.0f)) {
for (i = 0; i < M * N; i++) {
if (pSrc[i] != 0.0f)
break;
}
if (i == M * N)
return 1;
}
return 0;
}
Updated on 2023-03-01 at 16:16:33 +0000