/github/workspace/src/MatrixFunctions/mat_mult_cmplx/kernels/plp_mat_mult_cmplx_q32s_xpulpv2.c
Functions
Name | |
---|---|
void | plp_mat_mult_cmplx_q32s_xpulpv2(const int32_t restrict pSrcA, const int32_t restrict pSrcB, uint32_t M, uint32_t N, uint32_t O, uint32_t shift, int32_t *restrict pDstC) Matrix matrix multiplication for complex 32-bit fix-point on XpulpV2. |
Defines
Name | |
---|---|
BASIC_VERSION |
Functions Documentation
function plp_mat_mult_cmplx_q32s_xpulpv2
void plp_mat_mult_cmplx_q32s_xpulpv2(
const int32_t *__restrict__ pSrcA,
const int32_t *__restrict__ pSrcB,
uint32_t M,
uint32_t N,
uint32_t O,
uint32_t shift,
int32_t *__restrict__ pDstC
)
Matrix matrix multiplication for complex 32-bit fix-point on XpulpV2.
Parameters:
- pSrcA Points to the first input matrix of shape MxN
- pSrcB Points to the second input matrix of shape NxO
- M Height of matrix SrcA and DstC
- N Width of matrix SrcA and height of matrix SrcB
- O Width of matrix SrcB and DstC
- shift Amount to shift the result of each multiplication ot the right
- pDstC Points to the output matrix of shape MxO
Return: none
Par: Fix-Point
Fix-Point and Shifting The result will be shifted by the parameter shift
to the right (which corresponds to a multiplication by 2^-shift
). Assume that matrix A is represente as pSrcA * 2^-x
and matrix B as pSrcB * 2^-y
(which means that A has x
, and B has y
bits after the binary point). Then, the output matrix C is represented as pDstC * 2^-(x + y - shift)
. The output matrix is also stored with the same number of bits as the inputs. Set the shift
parameter such that no overflow occurrs.
Macros Documentation
define BASIC_VERSION
#define BASIC_VERSION
Source code
/* =====================================================================
* Project: PULP DSP Library
* Title: plp_mat_mult_cmplx_q32s_xpulpv2.c
* Description: 32-bit fix-point complex matrix matrix multiplication for XPULPV2
*
* $Date: 17. July 2020
* $Revision: V0
*
* Target Processor: PULP cores
* ===================================================================== */
/*
* Copyright (C) 2020 ETH Zurich and Ubiversity of Bologna. All rights reserved.
*
* Author: Tibor Schneider, ETH Zurich
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "plp_math.h"
void plp_mat_mult_cmplx_q32s_xpulpv2(const int32_t *__restrict__ pSrcA,
const int32_t *__restrict__ pSrcB,
uint32_t M,
uint32_t N,
uint32_t O,
uint32_t shift,
int32_t *__restrict__ pDstC) {
#define BASIC_VERSION // if used don't forget to also use the undefine at end of file
#ifdef BASIC_VERSION
for (int m = 0; m < M; m++) {
for (int o = 0; o < O; o++) {
int32_t sum_re = 0;
int32_t sum_im = 0;
for (int n = 0; n < N; n++) {
int32_t a_re = (int32_t)pSrcA[(m * N + n) * 2 + 0];
int32_t a_im = (int32_t)pSrcA[(m * N + n) * 2 + 1];
int32_t b_re = (int32_t)pSrcB[(n * O + o) * 2 + 0];
int32_t b_im = (int32_t)pSrcB[(n * O + o) * 2 + 1];
sum_re += __ROUNDNORM_REG(a_re * b_re - a_im * b_im, shift);
sum_im += __ROUNDNORM_REG(a_re * b_im + a_im * b_re, shift);
}
pDstC[(m * O + o) * 2 + 0] = (int32_t)sum_re;
pDstC[(m * O + o) * 2 + 1] = (int32_t)sum_im;
}
}
#else
// TODO: Hackathon
#endif
#undef BASIC_VERSION
}
Updated on 2023-03-01 at 16:16:33 +0000