Skip to content

/github/workspace/src/MatrixFunctions/mat_mult_trans/kernels/plp_mat_mult_trans_i16s_xpulpv2.c

Functions

Name
void plp_mat_mult_trans_i16s_xpulpv2(const int16_t restrict pSrcA, const int16_t restrict pSrcB, uint32_t M, uint32_t N, uint32_t O, int32_t *restrict pDstC)
Matrix multiplication of 16-bit integer matrices kernel for XPULPV2 extension.

Functions Documentation

function plp_mat_mult_trans_i16s_xpulpv2

void plp_mat_mult_trans_i16s_xpulpv2(
    const int16_t *__restrict__ pSrcA,
    const int16_t *__restrict__ pSrcB,
    uint32_t M,
    uint32_t N,
    uint32_t O,
    int32_t *__restrict__ pDstC
)

Matrix multiplication of 16-bit integer matrices kernel for XPULPV2 extension.

Parameters:

  • pSrcA points to the first input matrix
  • pSrcB points to the second input matrix
  • M height of the first input matrix
  • N width of the first input matrix and hight of the second
  • O width of the second input matrix
  • pDstC points to the output matrix

Return: none

Matrix transposed matrix multiplication of a 16-bit integer matrices for XPULPV2 extension.

Source code

/* =====================================================================
 * Project:      PULP DSP Library
 * Title:        plp_mat_mult_i16s_xpulpv2.c
 * Description:  16-bit integer matrix multiplication for XPULPV2
 *
 * $Date:        22. December 2019
 * $Revision:    V0
 *
 * Target Processor: PULP cores
 * ===================================================================== */
/*
 * Copyright (C) 2019 ETH Zurich and University of Bologna.
 *
 * Author: Tom Kuchler, ETH Zurich
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "plp_math.h"

// define BASIC_VERSION // if used don't forget to also use the undefine at end of file

#ifdef BASIC_VERSION

void plp_mat_mult_trans_i16s_xpulpv2(const int16_t *__restrict__ pSrcA,
                                     const int16_t *__restrict__ pSrcB,
                                     uint32_t M,
                                     uint32_t N,
                                     uint32_t O,
                                     int32_t *__restrict__ pDstC) {

    uint32_t i; // loop counter
    uint32_t j; // loop counter
    uint32_t k; // loop counter

    for (i = 0; i < M; i++) {
        for (k = 0; k < O; k++) {
            int32_t sum = 0;
            for (j = 0; j < N; j++) {
                sum = sum + pSrcA[i * N + j] * pSrcB[k * N + j];
            }
            pDstC[i * O + k] = sum;
        }
    }
}

#else

void plp_mat_mult_trans_i16s_xpulpv2(const int16_t *__restrict__ pSrcA,
                                     const int16_t *__restrict__ pSrcB,
                                     uint32_t M,
                                     uint32_t N,
                                     uint32_t O,
                                     int32_t *__restrict__ pDstC) {

    uint32_t i; // loop counter
    uint32_t j; // loop counter
    uint32_t k; // loop counter

    uint32_t mod = N & 0x3;

    if (mod == 3) {
        for (i = 0; i < M; i++) {
            for (k = 0; k < O; k++) {
                int32_t sum1 = 0;
                int32_t sum2 = 0;
                for (j = 0; j < N / 4; j++) {
                    v2s aVec1 = *((v2s *)&(pSrcA[i * N + j * 4]));
                    v2s bVec1 = *((v2s *)&(pSrcB[k * N + j * 4]));
                    v2s aVec2 = *((v2s *)&(pSrcA[i * N + j * 4 + 2]));
                    v2s bVec2 = *((v2s *)&(pSrcB[k * N + j * 4 + 2]));

                    sum1 = __SUMDOTP2(aVec1, bVec1, sum1);
                    sum2 = __SUMDOTP2(aVec2, bVec2, sum2);
                }
                v2s aRem = *((v2s *)&(pSrcA[i * N + j * 4]));
                v2s bRem = *((v2s *)&(pSrcB[k * N + j * 4]));
                int32_t remainder = __SUMDOTP2(aRem, bRem, sum1) +
                                    pSrcA[i * N + j * 4 + 2] * pSrcB[k * N + j * 4 + 2];
                pDstC[i * O + k] = sum2 + remainder;
            }
        }
    } else if (mod == 2) {
        for (i = 0; i < M; i++) {
            for (k = 0; k < O; k++) {
                int32_t sum1 = 0;
                int32_t sum2 = 0;
                for (j = 0; j < N / 4; j++) {
                    v2s aVec1 = *((v2s *)&(pSrcA[i * N + j * 4]));
                    v2s bVec1 = *((v2s *)&(pSrcB[k * N + j * 4]));
                    v2s aVec2 = *((v2s *)&(pSrcA[i * N + j * 4 + 2]));
                    v2s bVec2 = *((v2s *)&(pSrcB[k * N + j * 4 + 2]));

                    sum1 = __SUMDOTP2(aVec1, bVec1, sum1);
                    sum2 = __SUMDOTP2(aVec2, bVec2, sum2);
                }
                v2s aRem = *((v2s *)&(pSrcA[i * N + j * 4]));
                v2s bRem = *((v2s *)&(pSrcB[k * N + j * 4]));
                int32_t remainder = __SUMDOTP2(aRem, bRem, sum1);
                pDstC[i * O + k] = sum2 + remainder;
            }
        }
    } else if (mod == 1) {
        for (i = 0; i < M; i++) {
            for (k = 0; k < O; k++) {
                int32_t sum1 = 0;
                int32_t sum2 = 0;
                for (j = 0; j < N / 4; j++) {
                    v2s aVec1 = *((v2s *)&(pSrcA[i * N + j * 4]));
                    v2s bVec1 = *((v2s *)&(pSrcB[k * N + j * 4]));
                    v2s aVec2 = *((v2s *)&(pSrcA[i * N + j * 4 + 2]));
                    v2s bVec2 = *((v2s *)&(pSrcB[k * N + j * 4 + 2]));

                    sum1 = __SUMDOTP2(aVec1, bVec1, sum1);
                    sum2 = __SUMDOTP2(aVec2, bVec2, sum2);
                }
                int32_t remainder = pSrcA[i * N + j * 4] * pSrcB[k * N + j * 4];
                pDstC[i * O + k] = sum1 + sum2 + remainder;
            }
        }
    } else {
        for (i = 0; i < M; i++) {
            for (k = 0; k < O; k++) {
                int32_t sum1 = 0;
                int32_t sum2 = 0;
                for (j = 0; j < N / 4; j++) {
                    v2s aVec1 = *((v2s *)&(pSrcA[i * N + j * 4]));
                    v2s bVec1 = *((v2s *)&(pSrcB[k * N + j * 4]));
                    v2s aVec2 = *((v2s *)&(pSrcA[i * N + j * 4 + 2]));
                    v2s bVec2 = *((v2s *)&(pSrcB[k * N + j * 4 + 2]));

                    sum1 = __SUMDOTP2(aVec1, bVec1, sum1);
                    sum2 = __SUMDOTP2(aVec2, bVec2, sum2);
                }
                pDstC[i * O + k] = sum1 + sum2;
            }
        }
    }
}

#endif

// undefine BASIC_VERSION

Updated on 2023-03-01 at 16:16:33 +0000