/github/workspace/src/MatrixFunctions/mat_mult_trans/kernels/plp_mat_mult_trans_i8p_xpulpv2.c
Functions
Name | |
---|---|
void | plp_mat_mult_trans_i8p_xpulpv2(void * args) Parallel matrix transposed matrix multiplication of a 8-bit integer matrices for XPULPV2 extension. |
Functions Documentation
function plp_mat_mult_trans_i8p_xpulpv2
void plp_mat_mult_trans_i8p_xpulpv2(
void * args
)
Parallel matrix transposed matrix multiplication of a 8-bit integer matrices for XPULPV2 extension.
Parameters:
- args pointer to plp_mat_mult_instance_i8 struct initialized by plp_mat_mult_i8_parallel
Return: none
Par: Exploiting SIMD instructions
The 8 bit values are packed four each into 32 bit vectors and then the four dot products are performed on 32 bit vectors, with 32 bit accumulator.
Source code
/* =====================================================================
* Project: PULP DSP Library
* Title: plp_mat_mult_i8p_xpulpv2.c
* Description: parallel 8-bit integer matrix multiplication for XPULPV2
*
* $Date: July. 2022
* $Revision: V1
*
* Target Processor: PULP cores
* ===================================================================== */
/*
* Copyright (C) 2019 ETH Zurich and University of Bologna.
*
* Author: Emmet Murphy, ETH Zurich
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "plp_math.h"
//#define BASIC_VERSION // if used don't forget to also use the undefine at end of file
#ifdef BASIC_VERSION
void plp_mat_mult_trans_i8p_xpulpv2(void *args) {
uint32_t core_id = hal_core_id();
plp_mat_mult_instance_i8 *arguments = (plp_mat_mult_instance_i8 *)args;
const int8_t *__restrict__ pSrcA = arguments->pSrcA;
const int8_t *__restrict__ pSrcB = arguments->pSrcB;
uint32_t M = arguments->M;
uint32_t N = arguments->N;
uint32_t O = arguments->O;
uint32_t nPE = arguments->nPE;
int32_t *__restrict__ pDstC = arguments->pDstC;
uint32_t m; // loop counter for M
uint32_t n; // loop counter for N
uint32_t o; // loop counter for O
for (m = core_id; m < M; m += nPE) {
for (o = 0; o < O; o++) {
int32_t sum = 0;
for (n = 0; n < N; n++) {
sum = sum + pSrcA[m * N + n] * pSrcB[o * N + n];
}
pDstC[m * O + o] = sum;
}
}
hal_team_barrier();
}
#else
void plp_mat_mult_trans_i8p_xpulpv2(void *args) {
uint32_t core_id = hal_core_id();
plp_mat_mult_instance_i8 *arguments = (plp_mat_mult_instance_i8 *)args;
const int8_t *__restrict__ pSrcA = arguments->pSrcA;
const int8_t *__restrict__ pSrcB = arguments->pSrcB;
uint32_t M = arguments->M;
uint32_t N = arguments->N;
uint32_t O = arguments->O;
uint32_t nPE = arguments->nPE;
int32_t *__restrict__ pDstC = arguments->pDstC;
uint32_t i = 0; // loop counter for M
uint32_t j = 0; // loop counter for N
uint32_t k = 0; // loop counter for O
for (i = core_id; i < M; i += nPE) {
for (k = 0; k < O / 4; k++) {
int32_t sum0 = 0;
int32_t sum1 = 0;
int32_t sum2 = 0;
int32_t sum3 = 0;
for (j = 0; j < N / 4; j++) {
v4s aVec = *(v4s *)&(pSrcA[(i + 0) * N + (j * 4)]);
;
v4s bVec0 = *((v4s *)&(pSrcB[(k * 4 + 0) * N + (j * 4)]));
v4s bVec1 = *((v4s *)&(pSrcB[(k * 4 + 1) * N + (j * 4)]));
v4s bVec2 = *((v4s *)&(pSrcB[(k * 4 + 2) * N + (j * 4)]));
v4s bVec3 = *((v4s *)&(pSrcB[(k * 4 + 3) * N + (j * 4)]));
sum0 = __SUMDOTP4(aVec, bVec0, sum0);
sum1 = __SUMDOTP4(aVec, bVec1, sum1);
sum2 = __SUMDOTP4(aVec, bVec2, sum2);
sum3 = __SUMDOTP4(aVec, bVec3, sum3);
}
for (j = j * 4; j < N; j++) {
int32_t aVal = pSrcA[i * N + j];
int32_t bVal0 = pSrcB[(k * 4 + 0) * N + j];
int32_t bVal1 = pSrcB[(k * 4 + 1) * N + j];
int32_t bVal2 = pSrcB[(k * 4 + 2) * N + j];
int32_t bVal3 = pSrcB[(k * 4 + 3) * N + j];
sum0 += aVal * bVal0;
sum1 += aVal * bVal1;
sum2 += aVal * bVal2;
sum3 += aVal * bVal3;
}
pDstC[i * O + (k * 4 + 0)] = sum0;
pDstC[i * O + (k * 4 + 1)] = sum1;
pDstC[i * O + (k * 4 + 2)] = sum2;
pDstC[i * O + (k * 4 + 3)] = sum3;
}
for (k = k * 4; k < O; k++) {
int32_t sum = 0;
for (j = 0; j < N / 4; j++) {
v4s aVec = *((v4s *)&(pSrcA[i * N + (j * 4)]));
v4s bVec = *((v4s *)&(pSrcB[k * N + (j * 4)]));
sum = __SUMDOTP4(aVec, bVec, sum);
}
for (j = j * 4; j < N; j++) {
int32_t aVal = pSrcA[i * N + j];
int32_t bVal = pSrcB[k * N + j];
sum += aVal * bVal;
}
pDstC[i * O + k] = sum;
}
}
}
#endif
//#undef BASIC_VERSION
Updated on 2023-03-01 at 16:16:33 +0000