Deeploy.Targets.Generic.Parsers.Conv2DParser
- class Deeploy.Targets.Generic.Parsers.Conv2DParser(noBiasHoisting=True)
Bases:
ConvParser
Methods
- __init__(noBiasHoisting=True)
__init__
([noBiasHoisting])parse
(ctxt, node[, default_channels_first, ...])DONT OVERRIDE - Uses other NodeParser functions to implement a full parsing passing of the node
parseInputs
(ctxt, node)DONT OVERRIDE - Takes care of hoisting IO tensors into the NetworkContext.
parseNode
(node)Parser-specific method to-be-implemented.
parseNodeCtxt
(ctxt, node[, channels_first])Parses the node's input and output tensors, and adds them to its operatorRepresentation.
parseOutputs
(ctxt, node)DONT OVERRIDE - registers the output tensor of the operator
Attributes
The internal representation of the operator this parser has analyzed that describes all relevant attributes of the node to be used by code generation
- parseNode(node: Node) bool
Parser-specific method to-be-implemented. Given a graphsurgeon node, this method returns whether its attributes are mappable by this parser.
- Parameters:
node (gs.Node) – Graphsurgeon node to be evaluated
- Returns:
False if any attribute in the node cannot be mapped correctly.
- Return type:
bool
- parseNodeCtxt(ctxt: NetworkContext, node: Node, channels_first: bool = True) Tuple[NetworkContext, bool]
Parses the node’s input and output tensors, and adds them to its operatorRepresentation. May also be used to assert certain input- and output-level characteristics like correct dimensions.
- Parameters:
ctxt (NetworkContext) – Current NetworkContext
node (gs.Node) – Node to be analyzed
channels_first (bool) – Flag to indicate whether tensor dimensions are expected to be in CxHxW layout (true) or HxWxC layout (false)
- Returns:
Tuple of the updated NetworkContext and return boolean to indicate whether the node, including it’s IO tensors can be mapped.
- Return type:
Tuple[NetworkContext, bool]
- parse(ctxt: NetworkContext, node: Node, default_channels_first: bool = True, ioParse: bool = True) Tuple[NetworkContext, bool]
DONT OVERRIDE - Uses other NodeParser functions to implement a full parsing passing of the node
- Parameters:
ctxt (NetworkContext) – Current NetworkContext
node (gs.Node) – Node to be parsed
default_channels_first (bool) – The default channels_first value if none is provided by the node’s attributes
ioParse (bool) – Flag to indicate whether to go through IO parsing or not
- Returns:
Returns updated NetworkContext and flag to indicate success
- Return type:
Tuple[NetworkContext, bool]
- classmethod parseInputs(ctxt: NetworkContext, node: Node) NetworkContext
DONT OVERRIDE - Takes care of hoisting IO tensors into the NetworkContext. Also verifies that all inputs have been registered and the output has not been registered.
- Parameters:
ctxt (NetworkContext) – Current NetworkContext
node (gs.Node) – Node whose IO tensors should be hoisted
- Returns:
Updated NetworkContext with hoisted IO tensors
- Return type:
- classmethod parseOutputs(ctxt: NetworkContext, node: Node) NetworkContext
DONT OVERRIDE - registers the output tensor of the operator
- Parameters:
ctxt (NetworkContext) – Current NetworkContext
node (gs.Node) – Operator whose outputs should be parsed
- Returns:
Updated NetworkContext
- Return type:
- operatorRepresentation: OperatorRepresentation
The internal representation of the operator this parser has analyzed that describes all relevant attributes of the node to be used by code generation
- Type:
Dict[str, Any]