Skip to content

/github/workspace/src/TransformFunctions/kernels/plp_bitreversal_xpulpv2.c

Functions

Name
void plp_bitreversal_16s_xpulpv2(uint16_t * pSrc, const uint16_t bitRevLen, const uint16_t * pBitRevTab)
In-place 16 bit reversal function.
void plp_bitreversal_16p_xpulpv2(uint16_t * pSrc, const uint16_t bitRevLen, const uint16_t * pBitRevTab, uint32_t nPE)
In-place 16 bit reversal function.
void plp_bitreversal_32s_xpulpv2(uint32_t * pSrc, const uint16_t bitRevLen, const uint16_t * pBitRevTab)
In-place 32 bit reversal function for XPULPV2.
void plp_bitreversal_32p_xpulpv2(uint32_t * pSrc, const uint16_t bitRevLen, const uint16_t * pBitRevTab, uint32_t nPE)
In-place 32 bit reversal function for XPULPV2.

Defines

Name
MIN(x, y)

Functions Documentation

function plp_bitreversal_16s_xpulpv2

void plp_bitreversal_16s_xpulpv2(
    uint16_t * pSrc,
    const uint16_t bitRevLen,
    const uint16_t * pBitRevTab
)

In-place 16 bit reversal function.

Parameters:

  • pSrc points to in-place buffer of unknown 16-bit data type
  • bitRevLen bit reversal table length
  • pBitRevTab points to bit reversal table

Return: none

In-place 16 bit reversal function for XPULPV2.

function plp_bitreversal_16p_xpulpv2

void plp_bitreversal_16p_xpulpv2(
    uint16_t * pSrc,
    const uint16_t bitRevLen,
    const uint16_t * pBitRevTab,
    uint32_t nPE
)

In-place 16 bit reversal function.

Parameters:

  • pSrc points to in-place buffer of unknown 16-bit data type
  • bitRevLen bit reversal table length
  • pBitRevTab points to bit reversal table
  • nPE number of cores

Return: none

function plp_bitreversal_32s_xpulpv2

void plp_bitreversal_32s_xpulpv2(
    uint32_t * pSrc,
    const uint16_t bitRevLen,
    const uint16_t * pBitRevTab
)

In-place 32 bit reversal function for XPULPV2.

Parameters:

  • pSrc points to in-place buffer of unknown 32-bit data type
  • bitRevLen bit reversal table length
  • pBitRevTab points to bit reversal table

Return: none

function plp_bitreversal_32p_xpulpv2

void plp_bitreversal_32p_xpulpv2(
    uint32_t * pSrc,
    const uint16_t bitRevLen,
    const uint16_t * pBitRevTab,
    uint32_t nPE
)

In-place 32 bit reversal function for XPULPV2.

Parameters:

  • pSrc points to in-place buffer of unknown 32-bit data type
  • bitRevLen bit reversal table length
  • pBitRevTab points to bit reversal table
  • nPE number of cores

Return: none

Macros Documentation

define MIN

#define MIN(
    x,
    y
)
(((x) < (y)) ? (x) : (y))

Source code

/* =====================================================================
 * Project:      PULP DSP Library
 * Title:        plp_bitreversal_xpulpv2.c
 * Description:  Bitreversal functions
 *
 * $Date:        3. July 2020
 * $Revision:    V0
 *
 * Target Processor: PULP cores
 * ===================================================================== */
/*
 * Copyright (C) 2020 ETH Zurich and University of Bologna. All rights reserved.
 *
 * Author: Michael Rogenmoser, ETH Zurich
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "plp_math.h"

#define MIN(x, y) (((x) < (y)) ? (x) : (y))

void plp_bitreversal_16s_xpulpv2(uint16_t *pSrc,
                                 const uint16_t bitRevLen,
                                 const uint16_t *pBitRevTab) {
    uint16_t a, b, i, tmp;

    v2s c;

    for (i = 0; i < bitRevLen;i += 2) {
        // a = pBitRevTab[i    ] >> 2;
        // b = pBitRevTab[i + 1] >> 2;

        c = __SRA2(*(v2s *)&pBitRevTab[i], ((v2s){ 2, 2 }));

        // real
        // tmp = pSrc[a];
        // pSrc[a] = pSrc[b];
        // pSrc[b] = tmp;

        tmp = pSrc[c[0]];
        pSrc[c[0]] = pSrc[c[1]];
        pSrc[c[1]] = tmp;

        // complex
        // tmp = pSrc[a+1];
        // pSrc[a+1] = pSrc[b+1];
        // pSrc[b+1] = tmp;

        tmp = pSrc[c[0] + 1];
        pSrc[c[0] + 1] = pSrc[c[1] + 1];
        pSrc[c[1] + 1] = tmp;


    }
}

void plp_bitreversal_16p_xpulpv2(uint16_t *pSrc,
                                 const uint16_t bitRevLen,
                                 const uint16_t *pBitRevTab,
                                 uint32_t nPE) {
    uint16_t a, b, i, tmp;

    v2s c;
    int core_id = hal_core_id();
    int step = bitRevLen/nPE;
    if(bitRevLen % nPE != 0) {
        step++;
    }
    if (step%2 != 0)
      step++;

    for (i = core_id * step; i < MIN(core_id*step+step, bitRevLen); i += 2) {
        // a = pBitRevTab[i    ] >> 2;
        // b = pBitRevTab[i + 1] >> 2;

        c = __SRA2(*(v2s *)&pBitRevTab[i], ((v2s){ 2, 2 }));

        // real
        // tmp = pSrc[a];
        // pSrc[a] = pSrc[b];
        // pSrc[b] = tmp;

        tmp = pSrc[c[0]];
        pSrc[c[0]] = pSrc[c[1]];
        pSrc[c[1]] = tmp;

        // complex
        // tmp = pSrc[a+1];
        // pSrc[a+1] = pSrc[b+1];
        // pSrc[b+1] = tmp;

        tmp = pSrc[c[0] + 1];
        pSrc[c[0] + 1] = pSrc[c[1] + 1];
        pSrc[c[1] + 1] = tmp;


    }
}

void plp_bitreversal_32s_xpulpv2(   uint32_t *pSrc, 
                                    const uint16_t bitRevLen, 
                                    const uint16_t *pBitRevTab) {
    uint32_t a, b, i, tmp;

    for (i = 0; i < bitRevLen; i += 2)
    {
        a = pBitRevTab[i    ] >> 2;
        b = pBitRevTab[i + 1] >> 2;

        //real
        tmp = pSrc[a];
        pSrc[a] = pSrc[b];
        pSrc[b] = tmp;

        //complex
        tmp = pSrc[a+1];
        pSrc[a+1] = pSrc[b+1];
        pSrc[b+1] = tmp;


    }
}

void plp_bitreversal_32p_xpulpv2(   uint32_t *pSrc, 
                                    const uint16_t bitRevLen, 
                                    const uint16_t *pBitRevTab, 
                                    uint32_t nPE) {
    uint32_t a, b, i, tmp;
    int core_id = hal_core_id();
    int step = bitRevLen/nPE;
    if(bitRevLen % nPE != 0) {
        step++;
    }
    if (step%2 != 0)
      step++;

    for (i = core_id * step; i < MIN(core_id*step+step, bitRevLen); i += 2) {

        a = pBitRevTab[i    ] >> 2;
        b = pBitRevTab[i + 1] >> 2;

        //real
        tmp = pSrc[a];
        pSrc[a] = pSrc[b];
        pSrc[b] = tmp;

        //complex
        tmp = pSrc[a+1];
        pSrc[a+1] = pSrc[b+1];
        pSrc[b+1] = tmp;


    }
}

Updated on 2023-03-01 at 16:16:33 +0000