Deeploy.Targets.Generic.TileConstraints.MulTileConstraint.MulTileConstraint

class Deeploy.Targets.Generic.TileConstraints.MulTileConstraint.MulTileConstraint

Bases: BOPTileConstraint

Methods

__init__()

__init__()

addGeometricalConstraint(tilerModel, ...)

Override this function to add your geometric constraints.

addPolicyConstraint(tilerModel, parseDict, ctxt)

Override this function to add your custom constraints to your node.

constructSymbolicNodeRep(tilerModel, ...)

extractBaseAddr(tilingSolution, ...)

getBaseAddr(tilingSolution, targetMemLevel, name)

sanitizeTilingSchedule(tilingSchedule)

serializeTilingSolution(tilingSolution, ...)

Compute the required input tiles as a sequence of HyperRectangles

wrapTilingSolution(tilingSolution, ...)

Attributes

dataIn1Name

Name of the first input tensor as defined by the operator's parser

dataIn2Name

Name of the second input tensor as defined by the operator's parser

dataOutName

Name of the output tensor as defined by the operator's parser

dataIn1Name = 'A'

Name of the first input tensor as defined by the operator’s parser

Type:

str

dataIn2Name = 'B'

Name of the second input tensor as defined by the operator’s parser

Type:

str

dataOutName = 'C'

Name of the output tensor as defined by the operator’s parser

Type:

str

classmethod addGeometricalConstraint(tilerModel: TilerModel, parseDict: Dict, ctxt: NetworkContext) TilerModel

Override this function to add your geometric constraints. Each dimension of the output tensors should be determinable through a linear equation that utilizes the dimensions of the input tensors and the attributes of the nodes.

static addPolicyConstraint(tilerModel: TilerModel, parseDict: Dict, ctxt: NetworkContext) TilerModel

Override this function to add your custom constraints to your node.

classmethod serializeTilingSolution(tilingSolution: NodeMemoryConstraint, absoluteOutputCubes: List[AbsoluteHyperRectangle], targetMemLevel: str, ctxt: NetworkContext, operatorRepresentation: Dict[str, str | Any]) Tuple[VariableReplacementScheme, TilingSchedule]

Compute the required input tiles as a sequence of HyperRectangles

Parameters:
  • tilingSolution (NodeMemoryConstraint) – The final tiling solution computed in the midend

  • absoluteOutputCubes (List[AbsoluteHyperRectangle]) – A list of HyperRectangles that represent tiles of the operator’s outputs with absolute offsets

  • targetMemLevel (str) – The name of the MemoryLevel registered within the Platform’s MemoryHierarchy where tiles should be transferred into (e.g.: L2, L1,… )

  • ctxt (NetworkContext) – The current NetworkContext

  • operatorRepresentation (Dict) – The operator’s node representation dictionary

Returns:

Return a VariableReplacementScheme to express which expressions within the target template might have to be replaced due to tiling. Also return a TilingSchedule to define one input HyperRectangle tuple for each output tile

Return type:

Tuple[VariableReplacementScheme, TilingSchedule]

Raises:

Exception – Raises an exception unless overridden in the calling class